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Post-Quantum Revolution

@ NIST aims to standardize quantum-resistant algorithms within 2020
o Main challenge is to understand precisely the hardness.
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Post-Quantum Revolution

(Gré')bner bases is a major tool for quantum resistant schemes]
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Post-Quantum Revolution

@ | Multivariate | : intrinsic tool

@ Code-based : emerging tool

B

B

J.-C. Faugeére, V. Gauthier-Umana, A.
Otmani, L. P., J.-P. Tillich.

A Distinguisher for High Rate McEliece
Cryptosystems.

IEEE-IT 13.

A. Couvreur, A. Otmani, J.-P. Tillich.
Polynomial Time Attack on Wild McEliece
over Quadratic Extensions.

EUROCRYPT 2014.

J.-C. Faugere, A. Otmani, L. P., F. De
Portzamparc, J.-P. Tillich.

Structural Cryptanalysis of McEliece Schemes
with Compact Keys.

DCC'2015.

PQC'16 program (Rank codes, Polar Codes)

@ | LWE-based | : new tool for asympt. hardness

@ Hash-based : minor impact
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Algebraic Cryptanalysis

Idea

@ Model a cryptosystem as a set of algebraic equations
@ Try to solve this system (code-based, multivariate based), or
estimate the difficulty of solving (LWE)

= Gaussian Elimination, Grobner basis, SAT-solver. . .

e N. Courtois, J. Ding, J.-C. Faugére, W. Meier, J. Patarin, A. Shamir,
B.-Y. Yang ...

Cryptosystem )
(+ messages, ciphertexts. .. ) ecret

Modeling

4x2+5x+6y2+3yz+5y+1,
5x2 4+ xy+2xz+622+3z+3, -
6xz+5y>+2y +4224+62+5 ’ Solving




Polynomial System Solving (PoSSo)

q, size of field n, nb. of variables m, nb. of equations
PoSSo
Input. non-linear polynomials p1, ..., pm € Fqlxi, ..., Xa]

Question. Find - if any — (z1, ..., z,) € Fy such that:

pi(z1,...,2,) =0,

Pm(z1,...,2,) =0.

Remark
@ PoSSo is NP-hard

@ Random instances of PoSSo are hard to solve in practice.




PoSSo Fukuoka Challenges

@ https://www.mqchallenge.org



https://www.mqchallenge.org

Methodology
Difficulties Specificity
@ Modeling : describe a @ cryptographic context

cryptosystem as a set of o Grébner bases

algebraic of equations
“universal” approach
(PoSSo is NP-Hard)
= several models are
possible !
@ Solving
= Minimize the number
of variables/degree
= Maximize the number
of equations




Grobner Basis

Linear system Non linear system
fl(X]_,...,Xn):O pl(X]_,...,Xn)ZO
Em(Xl,...,Xn):O pm(Xl,' . ):

V = Vecr, (l1,...,4m) (fl,.. s fm)
Gauss reduction of V Grobner bas is T

Definition [B. Buchberger'1965]

Let < be a mon. ordering (LEX or DRL), and Z C Fg[xq, . .., Xa].
G C Z is a Grobner basis iff:

Vf e€Z dg € G such that LeadingTerm_(g) | LeadingTerm _(f).




Zero-Dimensional Strategy

pl(le"'7Xn) g]_(Xl,...,Xn)

compute GB
pm(X17 ces ,X,,) gS(Xn)
Initial syst. LEX-GB



Zero-Dimensional Strategy

pl(X17"‘7Xn) g],_(Xla"'aXn) gl(Xla--',Xn)
compute GB : change order
pm(Xl,...,Xn) g;(xl,...,xn) gs(Xn)

Initial syst. DRL-GB LEX-GB



Computing a Grobner Basis

@ B. Buchberger
“An Algorithm for Finding the Basis Elements of the
Residue Class Ring of a Zero Dimensional
Polynomial Ideal”, PhD thesis, 1965.

B J.-C. Fauggére.
“A New Efficient Algorithm for Computing Grébner
Bases (F4).
Journal of Pure and Applied Algebra, 1999.

@ J.-C. Faugere.
“A New Efficient Algorithm for Computing Grébner
bases Without Reduction to Zero (F5).”
ISSAC, 2002.

@ C. Eder and J.-C. Faugere. B. BUChberger-
“A Survey on Signature-Based Grébner Basis
Computations'.
ArXiv, April 2014.



Computing a Grobner Basis

Macaulay Matrix /\/lchnmay of degree d
® p1;.--sPm € ]Fq[Xl""?Xn]
@ < monomial ordering (LEX, or DRL)

@ t; ; monomials of degree d — deg(f;)

mono. of deg. < D sorted for <

t11p1
ti2p1

tm,l Pm
tm,2 Pm




Polynomial System Solving

PERTE
Macaulay matrix /\/lacaulay in degree d Gaussian Elimination of OBuc(hberg)er (1965
. oF, (1999
P matrices up to degree F: (2002
PFF Diey : 5 ( )
| "'P,m
L I o(("+2+)") |
'!{ s’ PF ¥
,I 1 ll H ; i l I | Grobner: tptal degree |
Yy | 1! % M
L \ ';‘ ﬁ R ’ﬁr oFGLM (1993)
‘s | ":{ ; ‘1, i‘ ‘i‘) | \1!, ‘\‘ 1{!1\ I O(#Sols®)
GB complexity is driven by the ¥
maximal degree D, reached

| Grobner: lexicographical |




|
GBLA

@ GBLA team: B. Boyer, C. Eder, J.-C Faugeére, F. Martani
@ http://www-polsys.lip6.fr/~jcf/GBLA/index.html

GBLA

Presentation

GBLA is an open source (GPLv2) C library for linear algebra specialized for eliminating matrices generated during Grébner basis computations in algorithms like F4 or F5.

Download source

Current stable source (version 0.0.3).

In order to use it, you can proceed as follows :

The contigure step can be customised. Help is provided with conigure --help and can be used like contigure CFLAGS-"-marchenative -03" t0 replace default "-g -02"

If you need the tools.

cd tools ; make ;

Usage
- Programme ghia
See usage for detailed help, and the following for a few examples.

Example:

zcat matl.gz | -/gbla -

Computes the eliminations, uses 1 thread, outputs nothing, uses the old format, reads from the gunzipped stream nat1.gz.
zcat matrices/matl.gbm.gz | ./gbla v 1 -t 4 -
Computes the eliminations, uses 4 threads, outputs minimal information, uses the new format, reads from the gunzipped stream matrices/mat1.gbn.gz.

/gbla —v 2 —t 32 -n matrices/matl.gbm

Computes the eliminations, uses 32 threads, outputs timings and information, uses the new format, reads from a matrix nat1 on disk.
Binaries

Compiled binaries can be found there:
o linux (Intel static)
- linux (Intel AVX static)



http://www-polsys.lip6.fr/~jcf/GBLA/index.html

Complexity

Degree of Regularity

Let p1,...,pm € Fg[x1,...,xn] be homogeneous polynomials.

Drce = ming {dime({p € (o1 pr) | de(p) = ) = ("5 |




Complexity

Semi-Regular Sequence [Bardet, Faugére, Salvy, Yang, MEGA'2003]

Pis---, Pm € Fg[x1,...,xn] (m > n) be hom. polynomials of degree d. If
the system is semi-regular, then Dig is the index of the first non-positive

coeff. <0 J
d_ (1—z9)m
Zhdz - (]__z)n

d>0
= hy rank defects of Mchnulay
w Only trivial relations p;p; = p;p;

1= For non-homogenous polynomials, homogeneous part of highest degree

ww Fréberg's conjecture : semi-regular sequences exist !

Example (n=5m=6,d = 2)

1+5x+9X2+5x3—4X4—|—...




Complexity

Asymptotic Expansion [Bardet, Faugére, Salvy, Yang, MEGA’2003]

Let p1,...,pm € Fqg[x1,...,xn] be a semi-regular system of m= C - n
quadratic equations with C > 1 a constant :

1
Dieg = <C—2— C(C—1)>n.




Complexity

Global Picture [Bardet, Faugére, Salvy, Research Report, 2003]

Let p1,...,pm € Fg[x1, ..., xn] be a semi-regular system of m quadratic
equations:
1= poly-time complexity if m = (";2) (Linearization bound)

w poly-time complexity for GB if m = ("}%)
= sub-exponential complexity if m = O(n)

i exponential complexity if m = O(n) or m = n+ Cst




Algebraic Algorithms for LWE Problems
Plan

© Algebraic Algorithms for LWE
Problems (joint work with
M. Albrecht, C. Cid, J.-C
Faugeére)

© Grobner Bases Techniques in
MPQC (joint work with L.
Bettale, and J.-C Faugére)

© Real-Life Deployment of W. Grébner.
Multivariate Cryptography
(Joint work with J.-C Faugeére)



Algebraic Algorithms for LWE Problems

Learning With Errors (LWE)

LWE(cv)
Input. a random matrix G € Fg*™ and ¢ € Fg.
Question. Find — if any — a secret (s1,...,5s,) € [Fg such that:

error =c — (s1,...,5,) x G € Fg'is “small "

1= g € poly(n), prime

1 special error distribution s.t. | error; |[< ag < g
= Many cryptosystems based on LWE

1= Connection to worst-case GAPSVP a- g > \/n

4 O. Regev. [§ Z. Brakerski, A. Langlois, C.
“On Lattices, Learning with Peikert, O. Regev, D. Stehleé.
Errors, Random Linear Codes, “Classical Hardness of Learning
and Cryptography". with Error”.

Journal of the ACM, 20009. STOC 2013.



LWE with Binary Errors

BinaryErrorLWE

Input. a random matrix G € Fg*™ and ¢ € Fg.
Question. Find —if any — a secret (s1,...,s,) € Fg such that:

error =c — (s1,...,5,) x G € {0,1}".

[@ N. Déttling, J. Miiller-Quade.

“Lossy Codes and a New Variant of the Learning with Errors Problem”.
Eurocrypt'13.

[§] D. Micciancio, C. Peikert.
“Hardness of SIS and LWE with Small Parameters".
CRYPTO'13.



Algebraic Algorithms for LWE Problems

LWE with Binary Errors

[l D. Micciancio, C. Peikert.
“Hardness of SIS and LWE with Small Parameters".
CRYPTO'13.

BinaryErrorLWE
Input. a random matrix G € Fg*™ and ¢ € Fg.

Question. Find — if any — a secret (s1,...,s,) € [Fg such that:

error =c—(s1,...,5,) x G € {0,1}".

Hardness Results

v’ Reduction from BinaryErrorLWE with m = n<1 +Q(1/ Iog(n))> to

the worst-case Gap-SVP

v [Arora-Ge'10] Proven polynomial-time algorithm by linearization if

m € O(n?)




Algebraic Cryptanalysis

@ Model BinaryErrorLWE as a set of non-linear equations

= [Arora-Ge'10,] Linear Equations with noise to noise-free algebraic
equations

@ Solve this system and estimate the difficulty of solving
= [Arora-Ge'10, Ding'10] Linearization
= Complexity analysis with Grébner bases under a genericity assumption

= Hardness of BinaryErrorLWE for n(l +Q(1/ Iog(n))> < m < 0(n?).

= Exp. speed up w.r.t. to Arora-Ge for LWE(«)

[§ S. Arora, and R. Ge. [§ J. Ding.
“New Algorithms for Learning in “Solving LWE Problem with
Presence of Error”. Bounded Errors in Polynomial
ICALP'11 & Electronic Time".
Colloquium on Computational IACR Cryptology ePrint Archive,

Complexity, April 2010. November 2010.



Algebraic Algorithms for LWE Problems
Plan

@ Algebraic Algorithms for LWE Problems (joint work with
M. Albrecht, C. Cid, J.-C Faugére)

@ Linear Equations with Noise — Noise-Free Algebraic Equations

© Grobner Bases Techniques in MPQC (joint work with L. Bettale,
and J.-C Faugeére)

© Real-Life Deployment of Multivariate Cryptography (joint work
with J.-C Faugeére)



Algebraic Modelling

BinaryErrorLWE

Input. a random matrix G € IFZX’", and c € IF;".
Question. Find —if any — (s1,...,s,) € Fg such that:

c—(s1,...,5,) x G =error € {0,1}".

©== m linear equations in n variables over F; with binary noise.




Algebraic Modelling

BinaryErrorLWE

Input. a random matrix G € IFZX’", and c € IFZ’.
Question. Find —if any — (s1,...,s,) € Fg such that:

c—(s1,...,5,) x G =error € {0,1}".

©== m linear equations in n variables over F; with binary noise.

Arora-Ge (AG) Modelling
Let P(X) = X(X —1):

n
pIZP(Cl—ZSJ'GLl):0,...,pm:P ZSJ im
j=1

v m quadratic equations in n variables over F,.




Algebraic Algorithms for LWE Problems
Until Now

e P(X) = X(X —1) € Fq[X] be vanishing on the errors.

AG Modelling
Solving BinaryErrorLWE =

oy (61— 3 5G11) =00 m = Plen = 3Gn) 0
j=1 =1

AG algorithm

@ BinaryErrorLWE: m quadratic equations in n variables over F.

v > polynomial-time algo. when m = O(n?).




Algebraic Algorithms for LWE Problems

Linear Independence

Theorem

Let P(x) = X(X —1). If ¢ > 2m, then for all m,1 < m < (”;1);

n
a = %Gi), - pm=P(c ZXJ jm)
j=1

are linearly independent with probability > 2;".




Algebraic Algorithms for LWE Problems

Linear Independence

Proof.
@ Mat: a sub-matrix of size m x m of the Macaulay matrix at degree 2
@ p(G) = Det(Mat).
e if p(G) is non-zero, then by Schwartz-Zippel-DeMillo-Lipton:

Pre(p(G) #0) > 1 - 2;"

e Find G* such that p(G*) # 0:

1111000000
0100111000
0010010110
00010010011




Algebraic Algorithms for LWE Problems
Plan

@ Algebraic Algorithms for LWE Problems (joint work with
M. Albrecht, C. Cid, J.-C Faugére)

@ A Grobner Basis Algorithm for BinaryErrorLWE

© Grobner Bases Techniques in MPQC (joint work with L. Bettale,
and J.-C Faugeére)

© Real-Life Deployment of Multivariate Cryptography (joint work
with J.-C Faugeére)



Algebraic Algorithms for LWE Problems

Solving BinaryErrorLWE with Grobner Bases

Assumption
Systems occurring in the AGD modelling are semi-regular.
1= Rank condition on the Macaulay matrices.




Algebraic Algorithms for LWE Problems

Solving BinaryErrorLWE with Grobner Bases

Asymptotic Expansion

Let p1,...,pm € Fg[x1,...,xn] be a semi-regular system of m= C - n
quadratic equations with C > 1 :

1
Dieg & <c2 C(C1)>n.

Theorem

Under the semi-regularity assumption:
= Ifm=n (1 + @) one can solve BinaryErrorLWE in O (23'25‘”).
w If m=2-n, BinaryErrorLWE can be solved in O (21927)

3n log log log n

= If m= O (nloglogn), one can solve BinaryErrorLWE in O (2 sloglog n

).

V.




About the Assumption

Assumption

Systems occurring in the Arora-Ge modelling are semi-regular.

1= Rank condition on the Macaulay matrices.

Magma 2.19 Dicg | Dreal Time
ne{5,...,25} m=n-logy(n) 3 3 < 24 sec.
n € {26,...,53} m=n-log,(n) 4 4 < 6 days

n=60 m=709(2n logy(n)) 3 3 32 min.
n=100 m=1728(2.6nlogy(n)) | 3 3 40 h.




Algebraic Algorithms for LWE Problems

About the Assumption

Assumption
Systems occurring in the Arora-Ge modelling are semi-regular.

1 Rank condition on the Macaulay matrices.

@ Full proof of the assumption = proving the well known Fréberg’s
conjecture

@ Semi-regularity of powers of generic linear forms [R. Froberg, J.
Hollman, JSC'94]

@ Assumption proved in restricted cases

[ M. Albrecht, C. Cid, J.-C Faugére, L. Perret.
“Algebraic Algorithms for LWE".
IACR Eprint, 2014.

@ Similar analysis for LWE(cv)
= Exp. speed up w.r.t. to Arora-Ge for LWE(«)



]
Plan

© Algebraic Algorithms for LWE
Problems (joint work with
M. Albrecht, C. Cid, J.-C
Faugeére)

© Grobner Bases Techniques in
MPQC (joint work with L.
Bettale, and J.-C Faugére)

© Real-Life Deployment of W. Grébner.
Multivariate Cryptography
(Joint work with J.-C Faugeére)



Overview

B

B
B

T. Matsumoto, H. Imai.

“Public Quadratic

Polynomial-Tuples for Efficient  Multivariate Public-Key Cryptography
Signature-Verification and . L .
Message-Encryption”. Family of schemes whose security is directly

EUROCRYPT '58. related to the difficulty of PoSSo
Jacques Patarin.

Hidden Fields Equations (HFE)
and Isomorphisms of Polynomials @ Random instances of PoSSo are hard to

(IP): Two New Families of solve in practice
Asymmetric Algorithms.

EUROCRYPT '96. @ Many schemes proposed : HFE, UOV,
Prof. Takagi Group Rainbow, ZHFE, Gui (HFEv-) ,...
CryptoMathCREST project. o MinRank attack on HFE

Jintai's talk.



Overview

B

B
B

T. Matsumoto, H. Imai. Multivariate Public-Key Cryptography
“Public Quadratic . . . .
Polynomial-Tuples for Efficient ~ Family of schemes whose security is directly

Signature-Verification and related to the difficulty of PoSSo
Message-Encryption”.

EUROCRYPT '88.

Jacques Patarin. @ Random instances of PoSSo are hard to
Hidden Fields Equations (HFE) solve in practice

and Isomorphisms of Polynomials

(IP): Two New Families of @ Many schemes proposed : HFE, UOV,
Asymmetric Algorithms. Rainbow, ZHFE, Gui (HFEv-) ...

EUROCRYPT '96. .
UROC % e MinRank attack on HFE

Prof. Takagi Group
CryptoMathCREST project. i
@ HFEBoost: Real-life deployment of

Jintai's talk. . .
ntal’s ta multivariate cryptography



Multivariate Public-Key Cryptography

Private-Key

'Public-Key
f:(Fg)" — (Fq)" easy to invert.

p:(Fq)" — (Fg)"

fl(Xla"‘7Xn)7 pl(X17""X")7
fn(XL 7Xl7) pn(X]_ Xn)-
S, T € GLn(Fy). p=TofoS.




Multivariate Public-Key Cryptography

Private-Key

'Public-Key
f:(Fg)" — (Fq)" easy to invert.

p:(Fq)" — (Fg)"

fl(Xla"‘7Xn)7 pl(X17""X")7
fn(le 7Xl7) pn(X]_ e Xn)-
S, T € GLn(Fy). p=TofoS.
Encrypt:
¢ =p(m).




Multivariate Public-Key Cryptography

Private-Key

'Public-Key
f:(Fg)" — (Fq)" easy to invert.

p:(Fq)" — (Fg)"

fl(Xla"‘7Xn)7 pl(X17""X")7
fn(XL 7Xl7) pn(X]_ e Xn)-
S, T € GLn(Fy). p=TofoS.
Decrypt: Encrypt:
m=S-LofLo T-3(c). ¢ =p(m).




-
HFE Trapdoor

@ Jacques Patarin.

Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families
of Asymmetric Algorithms.

EUROCRYPT '96.

HFE polynomial (g, prime)

Let D € N.
FOX)= Y AuXTH 4 N BXT + C e FglX].
0<ig<j<n 0<i<n
q'+¢<D q'<D

Decryption timings [J.-C. Faugére, Research Report, 2002]
@ Roots

(n, D) (80,129) | (80,257) | (80,513) | (128,129) | (128,257)
NTL 0.6 s. 25s. 6.4 s.

(128,513)
1.25 3.1s. 9.05 s.




-
HFE Trapdoor

@ Jacques Patarin.

Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families
of Asymmetric Algorithms.
EUROCRYPT '96.

HFE polynomial (g, prime)

Let D € N.
FOX)= Y AuXTH 4+ 3" BXT + C e FglX].
0<ij<n 0<i<n
q'+¢<D q'<D
f(x1,. .., Xn)
F(X)

fn(Xla s 7Xn)




Some Known Attacks

@ Message recovery attack [Faugére, Joux, 2003]
o First HFE challenge broken in 2002 (n = 80,9 = 2, D = 96, 80 bits
security)
o Theoretical degree of regularity ([L. Granboulan, A. Joux, J. Stern,
2006], [V. Dubois, N. Gamma, 2011], [J. Ding, T. Hodges, 2012], ...)
@ Key recovery attack [A. Kipnis, A. Shamir, 1999, J. Ding, Schmidt,
Werner, 2008]

Weak keys [C. Bouillaguet, P.-A. Fouque, A. Joux, J. Treger, 2011]
Differential properties [T. Daniels, D. Smith-Tone]



Message Recovery Attack

'® | Maximal Degree in the
Grébner basis computation random system

HFE 128<d<513
HFE 16<d<129

WA HFE 3<d<17

3l3

[Faugeére, Joux; L. Granboulan, A. Joux, J. Stern; V. Dubois, N.
Gamma; J. Ding, T. Hodges]

For any g:
Dreg = O(logy(D)).




Outline

@ Algebraic Algorithms for LWE Problems (joint work with
M. Albrecht, C. Cid, J.-C Faugére)

© Grobner Bases Techniques in MPQC (joint work with L. Bettale,
and J.-C Faugeére)
@ MinRank Attack on HFE

© Real-Life Deployment of Multivariate Cryptography (joint work
with J.-C Faugeére)



Rank Defect on F

Matrix Representation (non-standard quadratic form)

n—1n-—1

FX) =33 X7+ = XFXE,
i=0 j=0

with X = (X, X9,..., X9 ).




Rank Defect on F

Matrix Representation (non-standard quadratic form)

n—1n-—1

F(X) =33 f,X9%% = XFX",
i=0 j=0

with X = (X, X9,..., X9 ).

fi1 fie O 0

fir o fr O .0 g +¢ <D

0 0 0 0 rank(F) = log, (deg (F(X))).
0 0 0 0

[3 A. Kipnis and A. Shamir.
Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization.
CRYPTO '99.



Rank Defects on the Public-key

Use directly the public quadratic forms (p1, ..., pn).

Matrix Representation of Quadratic Form

pi(xt,. .., xn) = xGy x*

with x = (x1, ..., xn).

@ L. Bettale, J.-C. Faugeére, L. P.
Cryptanalysis of Multivariate and Odd-Characteristic HFE Variants.

PKC 2011.

@ L. Bettale, J.-C. Faugeére, L. P.
Cryptanalysis of HFE, Multi-HFE and Variants for Odd and Even Characteristic.
DCC, 2012.



Linear change of basis between (xi,...,x,) and (X%,..., X9"")

Proposition
Let (61,...,6n) € (Fgn)" be a basis of Fgn over Fy,.

0, 07 ... o7
q :
Mn = 92 92 . (= Man(]Fq")'
én oq .. 99"

@ For V=" vt €Fgn:

(vi,...,vo)M, = (V, V9 ... Vi )




Improvement of Kipnis-Shamir’s Attack

Wewriteand F(X)=>1" IZ" L X949 Let M,

o, 09 ... 09"

. .
9_2 b2 | € Maxn (Fgr).
0, 69 ... 09"

We have:

XMy = (x1,. .., %)My = (X, X9, ..., X9 ), with X = 37 xi6; € Fon.
We define px(x) = x Gk x!, T"!M, =U =[u;j], and SM,, = W
Fundamental Equation [L. Bettale, J.-C. Faugeére, L. P., DCC'12]

n

> 140G = WFW,
k=1




Improvement of Kipnis-Shamir’s Attack

Wewriteand F(X)=>7" 12" L X9t

Fundamental Equation [L. Bettale, J.-C. Faugére, L. P., DCC’'12]

n
> thoGiy1 = WFW,

MinRank ([N. Courtois, 2001], [W. Buss, G. Frandsen, J. Shallit,
1999])

Go, ..., Gno1 € Mpp(Fg) and r >0, find (A1,..., \,) € (Fq)" s.t.
rank <Z )\ka> =r.
k=1

@ MinRank in NP-hard




Outline

@ Algebraic Algorithms for LWE Problems (joint work with
M. Albrecht, C. Cid, J.-C Faugére)

© Grobner Bases Techniques in MPQC (joint work with L. Bettale,
and J.-C Faugeére)

@ Solving MinRank

© Real-Life Deployment of Multivariate Cryptography (joint work
with J.-C Faugeére)



Solving MinRank — Kernel Approach

& A. Kipnis, A. Shamir.
Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization.
CRYPTO 99.

The goal is to find A = (A1,...,\y) €Fgs. t.:

rank Z/\fo =r.
j=1

o E)\ = 2}7:1 AJ'MJ'Z

Rk(Ey) = r < 3(n— r) linearly indep. vectors X/) € Ker(Ey).

n
S M| XD =0, vi<i<n-r
j=1



Kernel Attack — (Il)

4 E)\ = Ejr-':]_ AJMJ

Rk(Ey) = r < 3(n— r) linearly indep. vectors X/) € Ker(E,).

o Let X(1) = (xf'.)7 ce x,gi)), where xj.(i)s are variables. Then :
X§1) e x{n_r) 0 --- 0
k 1) (n—r) 0 --- 0
X o oee X
oM =
= : : : : : :

(1) (n—r) 0 --- 0

Xn DR Xn



Kernel Attack — (I1I)

o |Write X() = (e,-,xp, . 7xr(")) , where ¢; € F~" and ><j(")s are var.
1 0 0
0 1 0
: : : : 0 --- 0
K : : : 1 0 --- 0
ZMM} ?1) 0 o (n—r) - .
j:1 Xl .« .. .« . Xl -
) . . ) 0o --- 0
X,El) X,(nfr)

o Kernel attack [N. Courtois, L. Goubin, 2000], exhaustive search on the
kernel, O(q(ﬂ%’))



Kernel Attack — (I1I)

o |Write X() = (e,-,xp, . 7xr(")) , where ¢; € F~" and ><j(")s are var.
1 0 0
0 1 0
o : 0 --- 0
k S : 0 --- 0
ZMM} ?1) 0 o (n—r) - : :
j:1 Xl PR PR Xl -
. ) 0 --- 0
X,El) X,(nfr)

o Kernel attack [N. Courtois, L. Goubin, 2000], exhaustive search on the
kernel, O(qﬁ)
e quadratic system of (n — r)n equations in r(n — r) 4+ n unknowns.

@ J.-C. Faugere, F. Levy-dit-Vehel, L P.
Cryptanalysis of MinRank.
Crypto 2008.



Solving MinRank

G =31 \Gi
n: size of the matrices, r: target rank

Kipnis-Shamir modeling‘

Rank(G) = r & 3x(1) ... x("=1) ¢ Ker(G).

/n—r

Xr(l) xﬁ"_r)

@ n(n — r) multilinear equations.

@ r(n—r)+ k variables.



Solving MinRank

G =31 \Gi
n: size of the matrices, r: target rank

Kipnis-Shamir modeling‘

Rank(G) = r & 3x(1) ... x("=1) ¢ Ker(G).

/n—r

XV )

@ n(n — r) multilinear equations.

@ r(n—r)+ k variables.

‘ Minors modeling‘

Rank(G) = r

all minors of size (r 4+ 1) of G vanish.

o (r£1)2 equations of degree r + 1.

@ k variables.

Few variables, lots of equations, high de-
gree




Solving MinRank

G= 27:1 G,

n: size of the matrices, r: target rank

Kipnis-Shamir modeling‘

Rank(G) = r & 3x(1) ... x("=1) ¢ Ker(G).

/n—r

XV )

@ n(n — r) multilinear equations.

@ r(n—r)+ k variables.

‘ Minors modeling‘

Rank(G) = r

all minors of size (r 4+ 1) of G vanish.

o (r£1)2 equations of degree r + 1.

@ k variables.

Few variables, lots of equations, high de-
gree

@ J.-C. Faugeére, M. Safey El Din, P.-J. Spaenlehauer.
Computing Loci of Rank Defects of Linear Matrices using Grobner Bases and Applications

to Cryptology.
ISSAC 2010.




Complexity Analysis — Minors

Proposition
@ Let (n, k,r) be the parameters of MinRank and A(t) = [a; ;(t)] be the

(r x r)-matrix defined by

. (t) B n—max(i,f) n_i N —j te
ajj(t) = ’ ’ )

(=0

@ The degree of regularity of MinRank polynomial systems is the index

of the first < 0 coefficient in:
)2—/( det A(t)
#(z)

(1— )

@ J.-C. Faugeére, M. Safey El Din, P.-J. Spaenlehauer.
Computing Loci of Rank Defects of Linear Matrices using Grobner Bases and Applications

to Cryptology.
ISSAC 2010.




Solving HFE with MinRank

@ log(Capb) = O(dreg)
@ Explicit method to compute dieg = Explicit method to bound the
complexity of the Grobner basis computation.

Theorem [L. Bettale, J.-C. Faugere, L. P., DCC’'12]

Under a genericity assumption, the complexity of solving the MinRank on a
HFE with secret polynomial of degree D with Grobner bases:

O ((nlees (O)11))

with 2 < w < 3 the linear algebra constant.

Conclusion

@ All known attacks against HFE are exponential in D.




Plan

© Real-Life Deployment of
Multivariate Cryptography
(joint work with J.-C Faugére)



Context

@ PoC android application tested by French army
o Key-Exchange with MPKC

Experiments on the

Technology transfer Mobile dev. compagny battlefield
attlefie



]
Is HFE Broken ?

Conclusion

@ All known attacks against HFE are exponential in D.

Decryption timings [J.-C. Faugére, Research Report, 2002]

@ Roots
(n,D) ][ (80,129) | (80,257) | (80,513) | (128,129) | (128,257) | (128,513)
NTL 0.6 s. 25 s. 6.4 s. 1.25 3.1s. 9.05 s.
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Is HFE Broken ?

Conclusion

@ All known attacks against HFE are exponential in D.

Decryption timings [J.-C. Faugére, Research Report, 2002]

@ Roots
(n,D) ][ (80,129) | (80,257) | (80,513) | (128,129) | (128,257) | (128,513)
NTL 0.6 s. 25 s. 6.4 s. 1.25 3.1s. 9.05 s.

Decryption timings [My laptop, 2016]

(n, D) (80,129) | (80,257) | (80,513) | (128,129) | (128,257) | (128,513)

Magma 2.19 0.04 s. 0.09 s. 0.260 s. 0.05 s 0.12 s. 0.320 s.




Is HFE Broken ?

Conclusion
@ All known attacks against HFE are exponential in D.

Decryption timings [My laptop, 2016]

(n, D) (80,129) | (80,257) | (80,513) | (128,129) | (128,257) | (128,513)

Magma 2.19 0.04 s. 0.09 s. 0.260 s. 0.05s 0.12's. 0.320 s.

[J.-C. Faugere, A. Joux, 2003]

The main result is that when the degree D of the secret polynomial is
fixed, the cryptanalysis of an HFE system requires polynomial time in the
number of variables. Of course, if D and n are large enough, the
cryptanalysis may still be out of practical reach.




HFEBoost

Characteristics
@ HFE-, public-key size : 130 KB for 80 bits of security
@ Dedicated ARM implementation of RootFinding (J.-C. Faugére)

@ Patent in process

Enc. Dec.
Samsung Galaxy S5 milis. | 0.72 s.
Samsung Galaxy S6 (32 bits) | mili. s. | 0.49 s.
Laptop (MAC) milli. s. | 0.18 s.




Conclusion

o MPKC is practical, good understanding of the security
@ HFEBoost, early stage startup project
o looking for more real-life experiments

HFEBoost
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