Vulnerabilities of
MceEliece in the World of Escher

Ray Perlner, Dustin Moody

National Institute of Standards and Technology
Gaithersburg, Maryland, USA

Ray.Perlner@NIST.gov; Dustin.Moody@NIST.gov

mailto:Ray.Perlner@NIST.gov
mailto:Dustin.Moody@NIST.gov

Outline

* “McEliece in the World of Escher”
[Gligoroski, Samardjiska, Jacobsen, Bezzateev 2014]

— A McEliece variant promising encryption and signatures

— New ideas:
* Error sets
* List decoding

— Encryption and signature schemes:
* Private key
* Decoding algorithm

 Major Results

— ISD for the error vector (signature forgery)
— ISD for the private key (key recovery for both encryption and signature)

 Countermeasures?

Commonalities with other McEliece
Variants.

* Private key operation is a decoding problem
— Generator Matrix form:
MmGyyp +e=¢ SGpyp + € = H(m)
— Parity Check Matrix form:
Hpup (€ — e)'=0 Hpyp(H(mM) — e)'=0

* Public Generator/Parity Check matrix is disguised
Private Generator/Parity Check matrix

Gpup = SGP Hyup = S'HP

Escher McEliece
Error Sets

e Standard Code-based crypto * Error sets
— Error vector is a biased sample — Error setis an unbiased sample
from the 1-bit alphabet (0,1) from a limited ¢-bit alphabet.
~ E.g. E.g. (00,01,10)
(00|10|11|00|00|10|00]|01) — E.g.
* Mean: 0.33 (01]00|00|01|00|10|01|01)
* 44% 00; 22% 01; 22% 10; 11% 11 ¢ Mean: 0.33

* 33%00;33% 01; 33% 10; 0% 11

Error Set Density, p

* For an error set of block size ¢ bits, Gligoroski
et al define the density as:

1
pe=D(&) = |E,| /¢
* For example for the error set (00,01,10)
Pp = 31/2

Escher McEliece
The Private key

Escher McEliece
Decoding Encryption

\,

_:I:I: !I,[, . 1

N oo

Divide Message as x4 |x,| ... |x,,, where x; has length k;
Divide Ciphertext as yo|y11y2| --- [Vw, Where y, has length k and the other y; have length n;
Divide yo as yo[1]1yol2]] ... |Yo[W], where y,[i] has length k;

Step 0: Compile a list of all the possible decodings of the first k; bits of y
x1 = Yol[1] + eo[1]
Step 1 < i < w: Update by checking consistency and (if necessary) extending the decoding.
(Xq] %) By +y; = ¢
Xit1 = Yoli + 1] + eo[i + 1]

Note the complexity of decoding is set by the list size at step 1: pkl, so k4 can’t be too big.

Escher McEliece
Decoding Signatures

\, i

_:I:I: !I,[, . 1

N oo

Divide Message as x4 |x,| ... |x,,, where x; has length k;
Divide Ciphertext as yo|y11y2| --- [Vw, Where y, has length k and the other y; have length n;
Divide yo as yo[1]1yol2]] ... |Yo[W], where y,[i] has length k;

Step 0: Compile a list of some of the possible decodings of the first k; bits of y
x1 = Yol[1] + eo[1]
Step 1 < i < w: Update by checking consistency and (if necessary) extending the decoding.
(Xq] %) By +y; = ¢
Xit1 = Yoli + 1] + eo[i + 1]

. . L 2\"w . .
Note the complexity of decoding is set by the list size at step w. Needs to be at least (;) to survive consistency
checks. Thus n,, can’t be too big.

On to attacks!

Information set Decoding for Errors

1. Permute the columns of Gy,
G’pub = GpubP’ = (A|B)
2. Check that A is invertible

3. Guess the first k bits, v, of the permuted error vector

eP. If so:
yP' = m(A|B) + eP' = (c|d) = (mA + v|D)
(c—v)A™t=m

4. Check the guess by computing the weight/pattern of:
y —(c— V)A_leub

— If the guess fails, repeat.

Using ISD for Errors to Forge
Signatures

The efficiency of ISD depends on the probability of guessing k bits of the
error vector of a valid signature

— Note that there is not a unique valid signature for each message.

For the error set (00, 01, 10)

— We can guess a single bit (0), and the other bit is guaranteed to be valid.

— By choosing the permutation such that all k information-set bits come from
different blocks, we guarantee that 2k of the n bits form a valid error vector.

— The probability the remaining n — 2k bits are also in the error set is:

—2k
-9
p - 2 -
Examples:

* Code (650,306): Claimed security 287->4; p = 27788
+ Code (1578,786): Claimed security 213711, p = 27125

Can this forgery be avoided?

* This attack can be avoided by

— Only accepting signature error vectors with
hamming weight ~n/3.

n—1.5k
* This only getsp = (\/;) ... hot enough.

. .. n
— Increasing the ratio P’

* But this will enable/worsen other attacks. More later ...

Information Set Decoding for the
Private Key.

Information set decoding algorithms find low weight
vectors in the row space of a matrix

Can be applied to G,y or Hyyp.

Note that G, and Hpup have the same row spaces as G
and H up to a Permutation.

wt. (vG) = wt. (VGP) = wt(vS™ISGP) = wt((vS™)Gpyp)

wt. (vH) = wt. (WHP) = wt(vS'"'S'"HP) = wt((vS"" ") Hpyp)

Where are the low-weight targets?

This has to be
small for
signature

\ This has to

be small for
encryption

Once we have low weight vectors,
then what?

The nonzero bits of low weight vectors all come from the
same columns in the private matrix

— Encryption
e H:ColumnsO,.. ki —1;k, ... k+ ng
— Signature
e G:ColumnsO, ... ki —1,n—n,,...n—1

The nonzero bits of the low weight vectors will therefore
come from the images of these columns under P

So, we can simply find these columns and lop them off.
— The result is a smaller matrix of the same form we started with.
— Repeating the process is generally easier.

Detecting the Structure through
Statistics.

by _
_ T

Removing The Columns

Generic information set decoding

1. Permute the columnsof H,,
H,pub — Hpubpl = (4|B)
2. Check that A is invertible
3. Left multiply by A71.
M = A_lH’pub = (11Q)
4. Check for low weight x’ in rowspace of M

— Check weight of x’ = vM.
— If low, return x = vMP'~ 1,

Why does this work?

H'= HPP’, H", ,, M all have the same rowspace

vM is the unique element of that rowspace with
prefix v

v is a guess for the first n-k bits (IS) of hPP’
— his a low weight element of the rowspace of H

Best guess: (almost) all zeroes
— All zeroes won’t work, since OM =0

Optimization 1
Using a nonrandom P’

 The permutation P used to disguise G is
non-random.

— It needs to keep ¢bit blocks of columns intact.

e The permutation P’ used for ISD should be
non-random in the same way.

— Note that if one column in a block is in the set we
want to remove, the rest are too.

Optimization 2:

Using rank to check if we’re removing the right columns

* Low weight vectors don’t all come from the correct rows:

Ly H=1lI-----1 1| Ly

* But, can tell which is which pretty quickly.
— Removing most of the highlighted columns at left will reduce the rank.
— Removing the same number of columns highlighted on the right won’t.

 And we can find the rest of the columns pretty easily too.
— Just check if removing a column reduces the rank more.

Key Recovery Results

 We implemented the key recovery attack in
SAGE on a laptop.

 We applied it to the 80 bit parameters for
signature and encryption.

* Block structure was correctly recovered in less
than 2 hours in both cases.

Can the scheme be saved?

* Encryption:
— Change the error set: counterproductive

— Key recovery can be avoided by increasing%

* However, the keys get ~300 times bigger to achieve claimed
security.

* Signhature:

— Change the error set: still counterproductive

— Key recovery can be avoided by increasing #

* But this worsens the previously discussed forgery attack.
— Doesn’t look like signature can be saved.

Conclusions

 We demonstrated two highly efficient attacks
— Near trivial signature forgery.

— Practical key recovery for both signature and
encryption.

* Itis possible the encryption scheme can be saved

— Although at the cost of making an inefficient scheme
several orders of magnitude worse.

— Attack is only quasi-polynomially costlier than
decryption.

* The signature scheme does not appear fixable

Thank You!

