
Vulnerabilities of
McEliece in the World of Escher

Ray Perlner, Dustin Moody
National Institute of Standards and Technology

Gaithersburg, Maryland, USA

Ray.Perlner@NIST.gov; Dustin.Moody@NIST.gov

mailto:Ray.Perlner@NIST.gov
mailto:Dustin.Moody@NIST.gov

Outline

• “McEliece in the World of Escher”
[Gligoroski, Samardjiska, Jacobsen, Bezzateev 2014]

– A McEliece variant promising encryption and signatures

– New ideas:
• Error sets
• List decoding

– Encryption and signature schemes:
• Private key
• Decoding algorithm

• Major Results
– ISD for the error vector (signature forgery)
– ISD for the private key (key recovery for both encryption and signature)

• Countermeasures?

Commonalities with other McEliece
Variants.

• Private key operation is a decoding problem
– Generator Matrix form:

𝑚𝐺𝑝𝑢𝑏 + 𝑒 = 𝑐 𝑠𝐺𝑝𝑢𝑏 + 𝑒 = 𝐻(𝑚)
– Parity Check Matrix form:

𝐻𝑝𝑢𝑏(𝑐 − 𝑒)𝑇= 0 𝐻𝑝𝑢𝑏(𝐻(𝑚) − 𝑒)𝑇= 0

• Public Generator/Parity Check matrix is disguised
Private Generator/Parity Check matrix

𝐺𝑝𝑢𝑏 = 𝑆𝐺𝑃 𝐻𝑝𝑢𝑏 = 𝑆′𝐻𝑃

Escher McEliece
Error Sets

• Standard Code-based crypto
– Error vector is a biased sample

from the 1-bit alphabet (0,1)
– E.g.

(00|10|11|00|00|10|00|01)
• Mean: 0.33
• 44% 00; 22% 01; 22% 10; 11% 11

• Error sets
– Error set is an unbiased sample

from a limited l-bit alphabet.
E.g. (00,01,10)

– E.g.
(01|00|00|01|00|10|01|01)
• Mean: 0.33
• 33% 00; 33% 01; 33% 10; 0% 11

Error Set Density, 𝜌

• For an error set of block size l bits, Gligoroski

et al define the density as:

𝜌ℓ = 𝐷 ℓ = |𝐸ℓ|
 1 ℓ

• For example for the error set (00,01,10)

𝜌ℓ = 3 1 2

Escher McEliece
The Private key

Escher McEliece
Decoding Encryption

• Divide Message as 𝑥1 𝑥2 … |𝑥𝑤, where 𝑥𝑖 has length 𝑘𝑖
• Divide Ciphertext as 𝑦0 𝑦1 𝑦2| … |𝑦𝑤, where 𝑦0 has length 𝑘 and the other 𝑦𝑖 have length 𝑛𝑖
• Divide 𝑦0 as 𝑦0[1] 𝑦0 2 … |𝑦0[𝑤], where 𝑦0[𝑖] has length 𝑘𝑖

• Step 0: Compile a list of all the possible decodings of the first 𝑘1 bits of 𝑦
𝑥1 = 𝑦0 1 + 𝑒0[1]

• Step 1 ≤ 𝑖 ≤ 𝑤: Update by checking consistency and (if necessary) extending the decoding.
(𝑥1| … |𝑥𝑖) ⋅ 𝐵𝑖 + 𝑦𝑖 = 𝑒𝑖

𝑥𝑖+1 = 𝑦0 𝑖 + 1 + 𝑒0[𝑖 + 1]

• Note the complexity of decoding is set by the list size at step 1: 𝜌𝑘1, so 𝑘1 can’t be too big.

Escher McEliece
Decoding Signatures

• Divide Message as 𝑥1 𝑥2 … |𝑥𝑤, where 𝑥𝑖 has length 𝑘𝑖
• Divide Ciphertext as 𝑦0 𝑦1 𝑦2| … |𝑦𝑤, where 𝑦0 has length 𝑘 and the other 𝑦𝑖 have length 𝑛𝑖
• Divide 𝑦0 as 𝑦0[1] 𝑦0 2 … |𝑦0[𝑤], where 𝑦0[𝑖] has length 𝑘𝑖

• Step 0: Compile a list of some of the possible decodings of the first 𝑘1 bits of 𝑦
𝑥1 = 𝑦0 1 + 𝑒0[1]

• Step 1 ≤ 𝑖 ≤ 𝑤: Update by checking consistency and (if necessary) extending the decoding.
(𝑥1| … |𝑥𝑖) ⋅ 𝐵𝑖 + 𝑦𝑖 = 𝑒𝑖

𝑥𝑖+1 = 𝑦0 𝑖 + 1 + 𝑒0[𝑖 + 1]

• Note the complexity of decoding is set by the list size at step w. Needs to be at least
2

𝜌

𝑛𝑤
to survive consistency

checks. Thus 𝑛𝑤 can’t be too big.

On to attacks!

Information set Decoding for Errors

1. Permute the columns of 𝐺𝑝𝑢𝑏
𝐺′𝑝𝑢𝑏 = 𝐺𝑝𝑢𝑏𝑃′ = 𝐴 𝐵

2. Check that A is invertible

3. Guess the first 𝑘 bits, 𝑣, of the permuted error vector
𝑒𝑃. If so:

𝑦𝑃′ = 𝑚 𝐴 𝐵 + 𝑒𝑃′ = 𝑐|𝑑 = 𝑚𝐴 + 𝑣 𝐷
𝑐 − 𝑣 𝐴−1 = 𝑚

4. Check the guess by computing the weight/pattern of:
𝑦 − 𝑐 − 𝑣 𝐴−1𝐺𝑝𝑢𝑏

– If the guess fails, repeat.

Using ISD for Errors to Forge
Signatures

• The efficiency of ISD depends on the probability of guessing 𝑘 bits of the
error vector of a valid signature
– Note that there is not a unique valid signature for each message.

• For the error set (00, 01, 10)
– We can guess a single bit (0), and the other bit is guaranteed to be valid.
– By choosing the permutation such that all 𝑘 information-set bits come from

different blocks, we guarantee that 2𝑘 of the 𝑛 bits form a valid error vector.
– The probability the remaining 𝑛 − 2𝑘 bits are also in the error set is:

𝑝 =
3

2

𝑛−2𝑘

.

• Examples:
• Code (650,306): Claimed security 287.54; 𝑝 = 2−7.88

• Code (1578,786): Claimed security 2137.11; 𝑝 = 2−1.25

Can this forgery be avoided?

• This attack can be avoided by

– Only accepting signature error vectors with
hamming weight ~𝑛/3.

• This only gets 𝑝 =
3

2

𝑛−1.5𝑘

… not enough.

– Increasing the ratio
𝑛

𝑘

• But this will enable/worsen other attacks. More later …

Information Set Decoding for the
Private Key.

• Information set decoding algorithms find low weight
vectors in the row space of a matrix

• Can be applied to 𝐺𝑝𝑢𝑏 or 𝐻𝑝𝑢𝑏.

• Note that 𝐺𝑝𝑢𝑏 and 𝐻𝑝𝑢𝑏 have the same row spaces as 𝐺
and 𝐻 up to a Permutation.

𝑤𝑡. 𝑣𝐺 = 𝑤𝑡. 𝑣𝐺𝑃 = 𝑤𝑡 𝑣𝑆−1𝑆𝐺𝑃 = 𝑤𝑡(𝑣𝑆−1 𝐺𝑝𝑢𝑏)

𝑤𝑡. 𝑣𝐻 = 𝑤𝑡. 𝑣𝐻𝑃 = 𝑤𝑡 𝑣𝑆′−1𝑆′𝐻𝑃 = 𝑤𝑡(𝑣𝑆′−1 𝐻𝑝𝑢𝑏)

13

Where are the low-weight targets?

This has to be
small for
signature

This has to
be small for
encryption

Once we have low weight vectors,
then what?

• The nonzero bits of low weight vectors all come from the
same columns in the private matrix
– Encryption

• 𝐻: Columns 0, …, 𝑘1 − 1; 𝑘, …, 𝑘 + 𝑛1
– Signature

• 𝐺: Columns 0, …, 𝑘1 − 1; 𝑛 − 𝑛𝑤 , … , 𝑛 − 1

• The nonzero bits of the low weight vectors will therefore
come from the images of these columns under 𝑃

• So, we can simply find these columns and lop them off.
– The result is a smaller matrix of the same form we started with.
– Repeating the process is generally easier.

Detecting the Structure through
Statistics.

𝐼𝑛−𝑘𝐻 =

Removing The Columns

Generic information set decoding

1. Permute the columns of 𝐻𝑝𝑢𝑏

𝐻′𝑝𝑢𝑏 = 𝐻𝑝𝑢𝑏𝑃′ = 𝐴 𝐵

2. Check that 𝐴 is invertible

3. Left multiply by 𝐴−1.
𝑀 = 𝐴−1𝐻′𝑝𝑢𝑏 = (𝐼|𝑄)

4. Check for low weight 𝑥’ in rowspace of 𝑀

– Check weight of 𝑥′ = 𝑣𝑀.

– If low, return 𝑥 = 𝑣𝑀𝑃′−1.

18

Why does this work?

• H’= HPP’, H’pub, M all have the same rowspace

• vM is the unique element of that rowspace with
prefix v

• v is a guess for the first n-k bits (IS) of hPP’
– h is a low weight element of the rowspace of H

• Best guess: (almost) all zeroes
– All zeroes won’t work, since 0M = 0

19

Optimization 1
Using a nonrandom 𝑃’

• The permutation 𝑃 used to disguise 𝐺 is
non-random.
– It needs to keep l-bit blocks of columns intact.

• The permutation 𝑃′ used for ISD should be
non-random in the same way.

– Note that if one column in a block is in the set we
want to remove, the rest are too.

Optimization 2:
Using rank to check if we’re removing the right columns

• Low weight vectors don’t all come from the correct rows:

• But, we can tell which is which pretty quickly.
– Removing most of the highlighted columns at left will reduce the rank.

– Removing the same number of columns highlighted on the right won’t.

• And we can find the rest of the columns pretty easily too.
– Just check if removing a column reduces the rank more.

Vs.

Key Recovery Results

• We implemented the key recovery attack in
SAGE on a laptop.

• We applied it to the 80 bit parameters for
signature and encryption.

• Block structure was correctly recovered in less
than 2 hours in both cases.

Can the scheme be saved?

• Encryption:
– Change the error set: counterproductive

– Key recovery can be avoided by increasing
𝑛

𝑘
• However, the keys get ~300 times bigger to achieve claimed

security.

• Signature:
– Change the error set: still counterproductive

– Key recovery can be avoided by increasing
𝑛

𝑛−𝑘
• But this worsens the previously discussed forgery attack.

– Doesn’t look like signature can be saved.

Conclusions

• We demonstrated two highly efficient attacks
– Near trivial signature forgery.

– Practical key recovery for both signature and
encryption.

• It is possible the encryption scheme can be saved
– Although at the cost of making an inefficient scheme

several orders of magnitude worse.

– Attack is only quasi-polynomially costlier than
decryption.

• The signature scheme does not appear fixable

Thank You!

