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oIt is an exciting time, ten years after
the 1st Post-Quantum Crypto
conference.

o A competition is likely to significantly
improve the state-of-the-art.
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o Lattices
o Lattice-based Cryptography
o Design
o Cryptanalysis
o Algorithms

o Security Estimates
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The Ublqmty of Lattices
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o In mathematics

o Algebraic number theory, Algebraic
geometry, Sphere packings, etc.

o Fields medals: G. Margulis (1978), E.

Lindenstrauss and S. Smirnov (2010), M.
Bhargava (2014).

o Applications in computer science, statistical
physics, etc.



What 1s a Lattice?
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o An infinite arrangement of “reqularly
spaced” points
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What 1s a Lattice?
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o A lattice is a dlscrefe subgroup of R", or the
set L(by,...,bq) of all linear combinations 2x;bi

where xi€Z, and the bjs are linearly
independent.
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Integer Lattices
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o A (full-rank) |n’reger lattice is any subgroup
L of (Z4,+) s.t. Z4/L is finite.

O

o A lattice is infinite, but lattice crypto

actually uses the finite abelian group Z4/L:
it works modulo the lattice L.



[ attice Invariants
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o The dim is the dim of span(L).

o The (co-)volume is the volume of any basis
parallelepiped: can be computed in poly-time.

Ex: vol(Z")=1.




n The Gaussian Heuristic
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o The volume measures the density of
lattice points.

o For "nice” full-rank lattices L, and “nice”
measurable sets C of R": — S
/
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Volume of Balls

e L e R it L PHRSIRE R o L SN Ree: S P g

o The volume of the n-dim ball of radius R is:
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Short Lattice Vectors
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o Any d-dim lattice L has exponentially

many vectors of norm <

O (ﬂ) vol(L)/4

o In a random d-dim lattice L, all non-

zero vectors have norm 2

Q (V) vol(L)'/




é Hermite’s Constant (1850)
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o This is the “"worst-case” For short
lattice vectors.

o Hermite showed the existence of this
constant:
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o Since 1996, lattices are very trendy in
complexity (STOC/FOCS): classical and quantum.

o Depending on the approximation factor with

respect to the dimension: ]
o NP-hardness 0(])
o non NP-hardness (NPnco-NP) \/ n
o worst-case/average-case reduction O(n logn)
o cryptography nod)

o polynomial-time algorithms 20(n log log n/ZOgn)\/
00



The Shortest Vector Problem (SVP)
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o Input: a basis of a d-dim lattice L

o Qutput: nonzero veL minimizing [Ivl|.

o Approx: |Ivll<f(d) llwll for all non-zero weL.
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[Lattice-based
Cryptography




Lattice-based Cryptography
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o RSA uses large finite (abelian) groups G=(Z/NZ)*
(2048 bits, 4096 bits...). To speed things up:

o Elliptic curve crypto uses smaller groups,
whose operations are more expensive.

o Lattice cryptography uses larger groups, but
whose operations are much cheaper.



Lattice-based Cryptography:
the Pros
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o Can be more efficient than .

SECURITY

o Potentially resistant to quantum computers.
Several groups are working on a lattice-TLS.

o Can have security properties based on
worst-case assumptions.

o Very trendy. Recent breakthroughs: fully
homomorphic encryption, multilinear maps
and obfuscation.



Lattice-based Cryptography: @
the Cons -
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o Apart from NTRU, few concrete proposals
of parameter sets: practicality is often
unclear.

o Gain might only be asymptotic.



Lattices 1n Cryptology
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o Three vyears s’rand ouf. |2
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01982: First use of lattices in
cryptanalysis: knapsack cryptosystems.

0 1996: First crypto schemes based on
hard lattice problems: NTRU, Ajtai-
Dwork, GGH...

0 2009: Fully-homomorphic encryption
based on lattices.



Lattice-based Crypto

o Somewhaf a revnval oF knapsack crypfo
(MerkleHellman78...)

o Two Families:
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o "Theoretical”: [Ajtai96...] focus on security
proofs.

o “Applied”: [NTRU96...] focus on efficiency.

o They “interact” more and more:
[Micc02,GPV08,Gentry09,PeikertlO,MiPel?2...]



Lattice Problems in Crypto
o In many crypto schemes, one actually deals
with problems not defined using lattices:

o SIS.
o LWE.

o Both are connected to lattice problems and
usually presented with linear algebra: instead,
we adopt a group-theoretical point of view,
to clarify the use of duality.



) The SIS Problem (Ajta11996)
| [Small Integer Solution]
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oLet (G,+) be a finite Abelian group:
[Ajtai96] used G=(Z/qZ)".

o Pick gi,....gm uniformly at random from G.

o Goal:
Find short x=(xi,...,.xn)eZ™ s.t. 2 x; gi= 0.

o This is essentially finding a short vector in a
(uniform) random lattice of L(G) = { lattices

pEZn o7/l G )
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Worst-case to Average-case
Reductlon
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o [Ajtai96]: If one can efficiently solve SIS

for G=(Z/qZ)" on the average, then one can
efficiently find short vectors in every n-dim
lattice.

o [GINX16]: This can be generalized to any
finite abelian group G, provided that #G is
sufficiently large >nmax(nrank(G))

Note: (Z/2Z)" is not.
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Duality
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o A character of G is a morphism from G to the
torus T=R/Z.

o G is isomorphic to its dual group G* =
{characters of Gj}.

o The dual lattice of the SIS lattice
L={x=(X1,...,Xm)€EZ™ s.t. X X; g = O} is

LX={y=(y1,...,Ym)ERM s.t. yi=s(gi) (mod 1)
for some seG*}



@ The LWE Problem (Regev2005)
pe § [Learning with Errors]
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olLet (G,+) be a finite Abelian group:
[Regev05] used G=(Z/qZ)" like [Ajtai9é].

o Pick gi,...,.gm uniformly at random from G.
o Pick a random character s in G*.

o Goal: recover s given gu,...,gm and noisy
approximations of s(qi),..., s(gm), where the
noise is Gaussian.



@ EX: Cychc G
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olLet G = Z/qZ
o Pick gi,....gm uniformly at random mod q.

o Goal: recover s given g,...,gm and
randomized approximations of sgi mod q,...,
Sgm mMod q.

o This is exactly a randomized variant of
Boneh-Venkatesans Hidden Number
Problem from CRYPTO 96.
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Worst-case to Average-case
Reductlon
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o [Regev05]: If one can efficiently solve LWE

for G=(Z/qZ)" on the average, then one can
quantum-efficiently find short vectors in
every n-dim lattice.

o [GINX16]: This can be generalized to any
finite abelian group G, provided that #G is
sufficiently large.
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Lattice-based Crypto
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o Two Types of Techniques

o Cryptography using trapdoors, i.e. secret
short basis of a lattice. Similarities with
RSA/Rabin cryptography.

o Cryptography without frapdoors. Similarities
with DL cryptography.

o Case study: Encryption.



Trapdoor—based Encryptlon
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RSA

SECURITY®

Remember
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o N=pq product of two large random primes.
o ed=1 (mod & (N)) where ¢ (N)=(p-1)(g-1).

oe is the public exponent
od is the secret exponent

o Then m—me is a trapdoor one-way

permutation over Z/NZ, whose inverse is
G oGt



Bounded Distance Decoding (BDD)
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o Input: a basis of a lcn“rlce L of dlm d and

a target vector T very close to L.

o Qutput: veL minimizing |lv-tll. Easy if one

knows a nearly-orthogonal basis.




Reducing Modulo a Lattice
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o If L is an integer lattice, the quotient Z"/L
is a finite group, with many representations:
lattice crypto works modulo a lattice.

o We call L-reduction any efficiently

computable map f from Z"s.t. f(x)=f(y)
iff x-yeL.



One-Way Functions from BDD
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o If BDD is hard, any public L-reduction f is
a one-way function.

olLet (tL) be a BDD instance: t=v+e where
vel and e is very short.

o Then f(t)=f(e) because t-ecL: if f is not
one-way, then given f(e), one can recover
e and also the BDD solution v=t-e.



Bulldmg L-Reductions
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o Any basis provides two L-reductions,
thanks to Babais nearest plane algorithm
and rounding-off algorithm.

o NTRU encryption implicitly uses a
L-reduction.



Ex: Babai’s rounding off

mw‘&%m*mmvmm.“a" by < I LR SRR e R SLL L avered .u“:{kﬁA;"Iwa&’d:‘:"w

O O
. 0
f(t)
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Choose f(t) in the basis parallelepiped s.t. t-f(t)eL



Ex: NTRU Encrypt10n
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o Ring R=Z[X]/(XN-1), secret key=short (f,g)eR?,
public key h=g/f (mod q).

o A message m is a short element of R.

o Its ciphertext is c=m+pr*h (mod q) where r is
a sparse element of R. This corresponds to
the L-reduction F(m,-r) = (m+pr*h (mod q),0)
for the lattice L={(u,v)eR? s.t. u=pv*h (mod q)}



Solvmg BDD by L-reduction
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o The L-reductions derived from Babai's
algorithms leave some set invariant:

there exists D(B)CZ"s.t. f(x)=x for all
xeD(B). This allows to solve BDD when
the erroreD(B).

o The largest ball inside D(B) depends
on the quality of the basis.



Deterministic Public-Key Encryption
|[GGHY7-MiccO1]
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o Secret key = Good basis B
o Public key = Bad basis X%

© Message = Short vector
o Encryption = L-reduction with the public key

o Decryption = L-reduction with the secret key



ru Optimization: NTRU Encryption
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o Ring R=Z[X]/(XN-1), secret key (f,g)eR?, public
key h=g/f (mod q).
o Encryption can be viewed [MiOl] as L-reducing

a short vector with the Hermite normal form,
where L={(u,v)eR? s.t. u=pv*h (mod q)}.

o Decryption is a special BDD algorithm using
the secret key (f,g).



Trapdoor—less Encrypt1on
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\ ‘Q- Diffie-Hellman Key Exchange
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olet G= (g) be genera’red by g of order g.
Bob

o Both can compute the shared key g°°.

o This key exchange is the core of El Gamal
public-key encryption.



Abstractmg DH
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olLet e: (ab) ~ g"b ThIS map is a pairing: it
ZyoX Zy > G is bilinear.

OolLet f: a — g® be the DL one-way function
Z,— G

o e(a,b) can be computed using (f(a),b) or (a,f(b)),

i.e. even if a or b is hidden by f.

o Security = hard to distinguish (f(a),f(b),e(a,b))
from (f(a),f(b),random). This is called DDH.



DH with Lattices?
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o What would be the pairing?

o What would be the one-way function
to hide inputs?
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Pairing from Lattices
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o Let gi,.-,gm In G. The dUClI grOuP Gx induces
a pairing G*xZ" R /Z
by € (S,(X1yeeesXm)) = S(Zi Xi i)

o Let y=fq(xi,...,.xm)=2i Xi gi €G where xis small.
and b=f*y(s,e)= (s(qi),-..,s(gm))+e €(R/Z)™, e small.
o Then € (s,(x1,...,.xm)) can be computed from (s,y) or

(b,(X1,-..,Xm)) as S(Zi xi g) =Zi i s(gi) ={(X1,...,Xm),b)

because the xis are small.



Noisy Key-Exchange
from Lattlces _
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olLet gi,...,.gm genera’re e

b=F*4(s,e)= (S(gl), ..S(gm))+e
ser G* T Bob

short (xi,...,Xm)

o Both compute an approx of € (s,(xi,...,xm))=s(y):

Alice computes s(y)+e'and
Bob computes 2 x; b;.



El Gamal Encryption
from Lattlces
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o This key exchange gives rise ‘ro two El
Gamal-like public-key encryption schemes,
because the lattice pairing is not symmeftric.

o These El-Gamal-like schemes are IND-CPA-
secure under the hardness of LWE/SIS.

o Similarly, many LWE/SIS schemes can be
viewed as analogues of the RSA/DL world:
[GPVO08] is a lattice analogue of Rabins

signature, efc.



Concrete Lattice Schemes
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o Encryption

o NTRU [HPS1998...]: Parameters have
changed several times (Ex: decryption
failure attacks), but the core idea
remains the same. Has been standardized.

o RLWE schemes: more efficient than LWE,
but stronger hardness assumption. Being
used in lattice-TLS prototypes.



Concrete Lattice Schemes
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o Signature

o NTRU: Less succesful than encryption. The
latest version is NTRU-MLS [PQC ‘14], after
deadly attacks on NSS [GISS52001,GeSz02]
and NTRUSign [NgRe2006,DuNgl2].

o BLISS [DDLL2013]: the most optimized
version uses NTRU-like assumpftions.

o For now, Fiat-Shamir signatures are more
efficient than Hash-and-Sign signatures...



Cryptanalysis of Lattice-
based Cryptography



SVP Al gonthms
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o Polynomial-time approxnma‘rlon algorithms.
o The LLL algorithm [1982].

o Block generalizations by [Schnorr1987],
[GHKN2006], [Gama-N2008], [MiWa?2016].

o Exponential exact algorithms.

o Polynomial-space: Enumeration [Kannan1983]
and pruning variants efc.

o Exponential-space: Sieving [AKS2001], [MiVo10]



Maths vs Algonthms
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o Maths: Proving the existence of short
lattice vectors i.e. upper bounds on
Hermites constant.

o Algorithms: Finding short or shortest lattice
vectors.



Maths vs Algonthms
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o Three mathematical inequalities have been
turned into efficient algorithms.

o Hermites inequality: the LLL algorithm.
o Mordell’s inequality: blockwise algorithms.
o Minkowskis inequality (Mordells proof)
o Worst-case to average-case reductions
o Sieve algorithms [ADRS15]
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Short Lattice Vectors
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o [Lagrangel773] In any 2 dim lattice L,
‘ there is a nonzero vector of norm

< (4/3)Y% vol(L)“2.

()"

o [Hermitel850]: In any d-dim lattice,

there is a nonzero vector of norm
< (4/3)(d-1)/4 VO[(L)I/d

4 (d—1)/4 i
e (—) =
3

&

= e



Finding Short Lattice Vectors

O [Lagrangel773]s algorl’rhm eFﬁaen’rly
‘ outputs a nonzero vector of norm

< (4/3)Y% vol(L)“2.

()"

o [Hermitel850] gives an implicit
(inefficient) algorithm to output a
vector of norm < (4/3)d-1/4 yol(L)/d

4 (d—1)/4 i
VYd < (g) = V2

&




The Lenstra-Lenstra-lL.ovasz
Algorlthm (1982)
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o Th: Given ¢ >0 and a d dlm la’r’rlce L, [LLL82]
finds, in time polynomial in size(lattice) and
1/¢, a basis whose 1st vector satisfies:

Ibsll < (4/3+ €)€-D/% vol (L)Y
lIbill < (4/3+ €)@-D72 ||L|]

oLLL is an algorithmic version of Hermite's

inequalify: 1 (d—1)/4
h<(3) oy



Intuition
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o Hermites inequality is based on two
ideas:

o Projection: this creates a lower-
dimensional lattice.

o Lifting short projected vectors

oLLL adds relaxation to guarantee
polynomial fime.



The Maglc of LLL
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o One of the main reasons behind the
popularity of LLL is that it performs
“"much better” than what the worst-
case bounds suggest, especially in low
dimension.



LLL: Theory vs Practice
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o The approx factors (4/3+8)(d‘1)/4 and (4/3+¢)d-1/2
are tight in the worst case: but this is only
for worst-case bases of certain lattices.

o Experimentally, 4/3+¢=1.33 can be replaced by
a smaller constant =1.08, for any lattice, by
randomizing the input basis.

o But there is no good explanation for this
phenomenon, and no known formula for the
experimental constant =1.08.
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Mordell’s
Inequality
and
Blockwise

Algorithms




oLLL is based on a local reduction in dim 2.

o Blockwise algorithms find shorter vectors
than LLL by using an exact SVP-subroutine
in low dim Kk called the blocksize.

o Even if the subroutine takes exponential
time in Kk, this is polynomial in d if k=log d.



Mathematical Analo gy
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o If we show the existence of very short
lattice vectors in dim Kk, can we use it fo
prove the existence of very short lattice
vectors in dim d > k?

o [Mordelll944]s inequality generalizes
Hermites inequality:

& R/
T ()



Approximation Algorithms
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o [LLL82] corresponds to [Hermitel850]s inequality.

de 1/d = 1/d
ILl = | 3 vol(L)™/“ = /72~ vol(L)

o The [GamaNO8] algorithm is an algorithmic
version of [Mordelll944]s inequality.

|Z]| < AP vol(2)Y



ﬂ Mordell’s Inequahty (1944)
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o Hermites inequality is the k=2 particular
case of Mordells inequality:

B e ro <y

o All known proofs of Mordells inequality are
based on duality: the Gama-N algorithm
also uses duality, which provides a different
way to decrease the lattice dimension.



An Algorithmic Version
-~ of Mordell’s Inequahty
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o The algorithm of [GamaN2008] solves Hermite-
SVP with factor essentially ﬂd ) using
a k-dim SVP-oracle.

o This algorithm is to Mordells inequality what LLL
is to Hermites inequality.

o By choosing an appropriate k=log d, the whole
algorithm is poly-time with a subexponential approx
factor.



decurity
Estimates




In the 1980s-1990s
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o Lattice algorn‘hms were somewhcnL

\\
3

a dark art.

o It was noticed that algorithms
performed better than theoretically
expected, but it was unclear by how
much exactly.



@ Issues
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o Theory is usually insufficient: worst-case
analyses do not match experiments.

o For crypto, we want more than a worst-
case bound, we would like to “predict”
the running times.

o Much more difficult
o Analogy with physics




Security Estimates
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o Somewhat independent of security proofs

o Identify the best attack based on the
state-of-the art

o Find as many attacks as possible

o Identify the “best” one

o Select keysizes/parameters accordingly



& A Core Problem
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o To assess the cost of a lattice attack, it is
useful to reduce it to a core problem.

o The most popular core problem is the
Hermite-Approx-SVP problem:

o Given a basis of a n-dim lattice L and an
approximation factor f(n), find a non-
zero v of norm < f(n) vol(L)".



Solving Lattice Problems In Practice
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o The Hermite-factor is convenient:
o Run the algorithm on a random lattice.

© Measure b1 , typically exp. in d.

o Performances for the main lattice problems
(SIS, LWE, etc.) can be derived [GaNOS,
MiRe09...]. But maybe not so clear for
NTRU.



Estlmatmg Lattice Attacks
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o Given some lattice attack, it is often
possible to (roughly) estimate its efficiency

o Assess the required Hermite-factor
o If LLL is enough, assess cost(LLL)

o Otherwise, assess the required BKZ-
blocksize and its cost

o We only require an order of magnitude.



= . Predlctmg BKZ [ChN11]

B————
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o Predict the behaviour of high-blocksize
state-of-the-art BKZ (k2>50), using an
efficient simulation algorithm: the minimum of
most k-dim blocks seems to behave like
random lattices.

'
m(d—l)/(k—l) g oo [LLL
becomes roughly & 7| %
s 1.0097 —e8KZ90
. A==l kE—1 & 1.0078 '
GaussHeurlst(k)( E=D) =g BKZ2
022 235 260 2100

Enumeration Time (clock cycles)



Analogy with Factormg
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o When analyzing sieve algorithms (QS, NFS,
etc.), we assume heuristically that certain
numbers behave like random numbers,
when it comes to smoothness probability.

o Here, we assume that certain (projected)
lattices behave like random lattices, when
it comes to the first minimum.



[llustration for Average Dim
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Approx Blocksize Target H-factor
85 1.01°
106 1.0094
133 1.0081
168 1.0074
216 1.0061
286 1.0054




Are We Done?’
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oIt remains to estimate the cost of the
BKZ-subroutine: finding (nearly-)shortest
vectors in ““small” dimensions...

o This is where things are not so clear:
optimization is difficult and there has
been progress in the past few years.



In a Nutshell &
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o In current mplemen‘rahons the SVP—
subroutine for BKZ is extreme-pruning

enumeration [GNR10].

o There are “reasonable” predictions [GNR10]

for this subroutine, but optimization is

unclear: lower and upper bounds in [ChN11].
Approx Blocksize | Cost in core-days

140 <223 [ChN11]
170 <24° Figures

250 <2




HALL OF FAME

Euclidean Subm. Approx.

Position Dimension e Seed Contestant Solution Algorithm IR RN
1 146 3195 0  Kenji KASHIWABARA and Tadanori TERUYA  vec Other 20>~ 1.04534
2 144 3154 0  Kenji KASHIWABARA and Tadanori TERUYA  vec Other  291>° 1.04284
3 142 3141 0  Kenji KASHIWABARA and Tadanori TERUYA  vec Other 2915 1.04609
4 140 3025 0  Kenji KASHIWABARA and Tadanori TERUYA  vec Other 297> 1.01139
5 138 3077 0  Kenji KASHIWABARA and Tadanori TERUYA  vec other 20! 1.03516
6 134 2976 0  Kenji KASHIWABARA and Tadanori TERUYA  vec Other 33_1;3- 1.01695
7 132 3012 0 Kenji Kashiwabara and Masaharu Fukase  vec Other (2)21;/; 1.03787
8 130 2883 0 Yoshinori Aono and Phong Nguyen vec ENUM, BKZ 210013 0.99871
9 130 3025 0 Kenji Kashiwabara and Masaharu Fukase vec Other ‘—12(1)_1135 1.04787
10 128 2084 0  Kenji Kashiwabara and Masaharu fukase  vec Other  297°° 1.04017
11 128 2992 0  Kenji Kashiwabara and Masaharu Fukase  vec Other 2013 1.04313
12 126 2855 0 Yoshinori Aono and Phong Nguyen vec ENUM,BKZ 2914~ 1 00556

09-9



The SVP Challenges
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Number Of core 'day \) O Pruning © Discrete Pruning
100000
10000
1000

100 o'fo 214 core-days,
much less
10 than 223

126 130 132 134 138 140 142 144 146 Dimension



S Companson with RSA

PN L e i Tt G Pomee G LA S Pty S9N LT 2Ry ittt L PHRSRRPUUE . S L ISR NS P

o The largest computation for the SVP
challenges is for dim 138 :
66,000 core-days = 2°3 clock cycles.

o This is 11 times cheaper than RSA-768 =
730,000 core-days = 2%’ clock cycles.

o The 140-dim computation confirms that
the upper bounds of [ChNI1l] are only
upper bounds.



State-of-the-Art
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o We understand reasonably well the best
lattice algorithms: we can guess the
approximate quality and the approximate
running time for a given set of parameters.

o But we dont know well how to optimize the
selection of parameters, and there might be
improvements for the subroutine: the latest

SVP records use a different form of pruned
enumeration.



Impact
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o We should be conservative: security
margin. Fortunately, only a major
improvement in blocksize can impact H-
factor estimates: an order of magnitude
for the blocksize is sufficient.

o Security estimates are fricky, especially
for high security levels like 256-bit
security: already non-trivial for RSA.



The Importance of Numerical
Challenges
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o Challenges are very useful to check the

state-of-the-art

NTRU
Challenges

@ Sm-m-il_\'lnnovation'
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Conclusion




Demgn
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o RSA/DL works in certain finite (abelian) groups G.
o Lattice cryptography works in (abelian) finite
quotient groups G'=Z"/L.
o The trapdoor is a secret representation of G'.

o G' may be much bigger than G, but has cheaper
operations.

o Noise and small preimages require to adapt
RSA/DL constructions.



) Desi gn
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o Lattice cryptography is different from
classical public-key cryptography, but
there are also many similarities.

o Making analogies hopefully helps our
understanding.



Trends 1in Design
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o More and more classical PK schemes have
been adapted to the lattice setting.

o Can all be adapted?

o A few lattice schemes achieve new
functionalities (FHE, multilinear maps, general
attribute-based encryption).

o Can they be achieved without lattices?



Cryptanalysm
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o There has been significant progress in
lattice algorithms in the past 10 years.

o It is a positive sign that the problem is
attracting more and more attention.

o On the other hand, how are we going to
model future progress in security
estimates?



@ Quantum Cryptanalysm
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o There are very few examples of
quantum algorithms... especially in
cryptanalysis.

o Until we have a quantum computer to
play with, it will be difficult to know
the true power of quantum
computers.



Security
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o How confident are we that our problems
are resistant to quantum computers?

o The most efficient lattice-based
cryptosystems use special lattices like
ideal lattices.

o How much can we frust our security
estimates? How precise are they?



Challenges
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o Post-quantum cryptography is a
revolution

o There is a lot of exciting work fo do



Thank you for your attention...
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Any question(s)?



