
Lattice-based Cryptography
 Phong Nguyễn

February 2016

Opening

It is an exciting time, ten years after
the 1st Post-Quantum Crypto
conference.

A competition is likely to significantly
improve the state-of-the-art.

Summary

Lattices

Lattice-based Cryptography

Design

Cryptanalysis

Algorithms

Security Estimates

Lattices

The Ubiquity of Lattices

In mathematics

Algebraic number theory, Algebraic
geometry, Sphere packings, etc.

Fields medals: G. Margulis (1978), E.
Lindenstrauss and S. Smirnov (2010), M.
Bhargava (2014).

Applications in computer science, statistical
physics, etc.

What is a Lattice?

An infinite arrangement of “regularly
spaced” points

What is a Lattice?

A lattice is a discrete subgroup of Rⁿ, or the
set L(b1,...,bd) of all linear combinations ∑xibi
where xi∈Z, and the bi’s are linearly
independent.

O

2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
1 1 1 1 1

Integer Lattices

A (full-rank) integer lattice is any subgroup
L of (Zd,+) s.t. Zd/L is finite.

A lattice is infinite, but lattice crypto
actually uses the finite abelian group Zd/L:
it works modulo the lattice L.

O

Lattice Invariants

The dim is the dim of span(L).

The (co-)volume is the volume of any basis
parallelepiped: can be computed in poly-time.
Ex: vol(Zn)=1.

O

The Gaussian Heuristic

The volume measures the density of
lattice points.

For “nice” full-rank lattices L, and “nice”
measurable sets C of Rn:

Card(L ⇥ C) � vol(C)
vol(L)

Volume of Balls

The volume of the n-dim ball of radius R is:

Vn(R) =
⇡n/2

�(1 + n/2)
Rn ⇠ 1p

n⇡

✓
2⇡e

n

◆n/2

Rn

Short Lattice Vectors

Any d-dim lattice L has exponentially
many vectors of norm ≤

In a random d-dim lattice L, all non-
zero vectors have norm ≥

O
��

d
⇥

vol(L)1/d

�
��

d
⇥

vol(L)1/d

O

Hermite’s Constant (1850)

This is the “worst-case” for short
lattice vectors.

Hermite showed the existence of this
constant:

p
�d = max

L

min~v2L,~v 6=0 k~vk
vol(L)1/d

Lattices and Complexity

Since 1996, lattices are very trendy in
complexity (STOC/FOCS): classical and quantum.

Depending on the approximation factor with
respect to the dimension:

NP-hardness

non NP-hardness (NP∩co-NP)

worst-case/average-case reduction

cryptography

polynomial-time algorithms

O(1)
√n

O(n logn)

1

∞2O(n log log n/logn)
nO(1)

The Shortest Vector Problem (SVP)

Input: a basis of a d-dim lattice L

Output: nonzero v∈L minimizing ||v||.

Approx: ||v||≤f(d) ||w|| for all non-zero w∈L.

O

2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
1 1 1 1 1

Lattice-based
Cryptography

Lattice-based Cryptography

RSA uses large finite (abelian) groups G=(Z/NZ)x
(2048 bits, 4096 bits…). To speed things up:

Elliptic curve crypto uses smaller groups,
whose operations are more expensive.

Lattice cryptography uses larger groups, but
whose operations are much cheaper.

Lattice-based Cryptography:
the Pros

Can be more efficient than

Potentially resistant to quantum computers.
Several groups are working on a lattice-TLS.

Can have security properties based on
worst-case assumptions.

Very trendy. Recent breakthroughs: fully
homomorphic encryption, multilinear maps
and obfuscation.

Lattice-based Cryptography:
the Cons

Apart from NTRU, few concrete proposals
of parameter sets: practicality is often
unclear.

Gain might only be asymptotic.

Lattices in Cryptology

Three years stand out:

1982: First use of lattices in
cryptanalysis: knapsack cryptosystems.

1996: First crypto schemes based on
hard lattice problems: NTRU, Ajtai-
Dwork, GGH…

2009: Fully-homomorphic encryption
based on lattices.

Lattice-based Crypto

Somewhat a revival of knapsack crypto
(MerkleHellman78...)

Two Families:

“Theoretical”: [Ajtai96...] focus on security
proofs.

“Applied”: [NTRU96...] focus on efficiency.

They “interact” more and more:
[Micc02,GPV08,Gentry09,Peikert10,MiPe12...]

Lattice Problems in Crypto

In many crypto schemes, one actually deals
with problems not defined using lattices:

SIS.

LWE.

Both are connected to lattice problems and
usually presented with linear algebra: instead,
we adopt a group-theoretical point of view,
to clarify the use of duality.

The SIS Problem (Ajtai1996)
[Small Integer Solution]

Let (G,+) be a finite Abelian group:
[Ajtai96] used G=(Z/qZ)n.

Pick g1,...,gm uniformly at random from G.

Goal:
Find short x=(x1,...,xm)∈Zm s.t. Σi xi gi = 0.

This is essentially finding a short vector in a
(uniform) random lattice of L(G) = { lattices
L⊆Zm s.t. Zm/L ∼ G }

Worst-case to Average-case
 Reduction

[Ajtai96]: If one can efficiently solve SIS
for G=(Z/qZ)n on the average, then one can
efficiently find short vectors in every n-dim
lattice.

[GINX16]: This can be generalized to any
finite abelian group G, provided that #G is
sufficiently large ≥nΩ(max(n,rank(G)))
Note: (Z/2Z)n is not.

Duality

A character of G is a morphism from G to the
torus T=R/Z.

G is isomorphic to its dual group Gx =
{characters of G}.

The dual lattice of the SIS lattice
L={x=(x1,...,xm)∈Zm s.t. Σi xi gi = 0} is

Lx={y=(y1,...,ym)∈Rm s.t. yi≣s(gi) (mod 1)
for some s∈Gx}

Let (G,+) be a finite Abelian group:
[Regev05] used G=(Z/qZ)n like [Ajtai96].

Pick g1,...,gm uniformly at random from G.

Pick a random character s in Gx.

Goal: recover s given g1,...,gm and noisy
approximations of s(g1),..., s(gm), where the
noise is Gaussian.

The LWE Problem (Regev2005)
[Learning with Errors]

Ex: Cyclic G

Let G = Z/qZ

Pick g1,...,gm uniformly at random mod q.

Goal: recover s given g1,...,gm and
randomized approximations of sg1 mod q,...,
sgm mod q.

This is exactly a randomized variant of
Boneh-Venkatesan’s Hidden Number
Problem from CRYPTO ’96.

[Regev05]: If one can efficiently solve LWE
for G=(Z/qZ)n on the average, then one can
quantum-efficiently find short vectors in
every n-dim lattice.

[GINX16]: This can be generalized to any
finite abelian group G, provided that #G is
sufficiently large.

Worst-case to Average-case
 Reduction

Lattice
Cryptography:

Design

Lattice-based Crypto

Two Types of Techniques

Cryptography using trapdoors, i.e. secret
short basis of a lattice. Similarities with
RSA/Rabin cryptography.

Cryptography without trapdoors. Similarities
with DL cryptography.

Case study: Encryption.

Trapdoor-based Encryption

Remember

N=pq product of two large random primes.

ed≡1 (mod φ(N)) where φ(N)=(p-1)(q-1).

e is the public exponent

d is the secret exponent

Then m→me is a trapdoor one-way

permutation over Z/NZ, whose inverse is
c→cd.

Bounded Distance Decoding (BDD)

Input: a basis of a lattice L of dim d, and
a target vector t very close to L.

Output: v∈L minimizing ||v-t||. Easy if one

knows a nearly-orthogonal basis.

O

t
v

Reducing Modulo a Lattice

If L is an integer lattice, the quotient Zn/L
is a finite group, with many representations:
lattice crypto works modulo a lattice.

We call L-reduction any efficiently
computable map f from Zn s.t. f(x)=f(y)
iff x-y∈L.

One-Way Functions from BDD

If BDD is hard, any public L-reduction f is
a one-way function.

Let (t,L) be a BDD instance: t=v+e where
v∈L and e is very short.

Then f(t)=f(e) because t-e∈L: if f is not
one-way, then given f(e), one can recover
e and also the BDD solution v=t-e.

Building L-Reductions

Any basis provides two L-reductions,
thanks to Babai’s nearest plane algorithm
and rounding-off algorithm.

NTRU encryption implicitly uses a
L-reduction.

Ex: Babai’s rounding off

Choose f(t) in the basis parallelepiped s.t. t-f(t)∈L

t

b1

b2

t-f(t)
f(t)

Ex: NTRU Encryption

Ring R=Z[X]/(XN-1), secret key=short (f,g)∈R2,
public key h=g/f (mod q).

A message m is a short element of R.

Its ciphertext is c=m+pr*h (mod q) where r is
a sparse element of R. This corresponds to
the L-reduction F(m,-r) = (m+pr*h (mod q),0)
for the lattice L={(u,v)∈R2 s.t. u≡pv*h (mod q)}

Solving BDD by L-reduction

The L-reductions derived from Babai’s
algorithms leave some set invariant:
there exists D(B)⊆Zn s.t. f(x)=x for all
x∈D(B). This allows to solve BDD when
the error∈D(B).

The largest ball inside D(B) depends
on the quality of the basis.

Deterministic Public-Key Encryption
[GGH97-Micc01]

Secret key = Good basis

Public key = Bad basis

Message = Short vector

Encryption = L-reduction with the public key

Decryption = L-reduction with the secret key

O

Optimization: NTRU Encryption

Ring R=Z[X]/(XN-1), secret key (f,g)∈R2, public
key h=g/f (mod q).

Encryption can be viewed [Mi01] as L-reducing
a short vector with the Hermite normal form,
where L={(u,v)∈R2 s.t. u≡pv*h (mod q)}.

Decryption is a special BDD algorithm using
the secret key (f,g).

Trapdoor-less Encryption

Diffie-Hellman Key Exchange

Let G=〈g〉be generated by g of order q.

Both can compute the shared key gab.

This key exchange is the core of El Gamal
public-key encryption.

Alice Boba∈R Z/qZ
ga ∈G

b∈R Z/qZ
gb ∈G

Abstracting DH

Let e: (a,b) ↦ gab. This map is a pairing: it
ddd Zq x Zq ➝ G is bilinear.

Let f: a ↦ ga be the DL one-way function
ddd Zq ➝ G

e(a,b) can be computed using (f(a),b) or (a,f(b)),
i.e. even if a or b is hidden by f.

Security = hard to distinguish (f(a),f(b),e(a,b))
from (f(a),f(b),random). This is called DDH.

DH with Lattices?

What would be the pairing?

What would be the one-way function
to hide inputs?

Pairing from Lattices

Let g1,...,gm in G. The dual group Gx induces
a pairing GxxZm➝R/Z
by ε(s,(x1,...,xm)) = s(Σi xi gi)

Let y=fg(x1,...,xm)=Σi xi gi ∈G where xi’s small.

and b=fxg(s,e)= (s(g1),...,s(gm))+e ∈(R/Z)m, e small.

Thenε(s,(x1,...,xm)) can be computed from (s,y) or

(b,(x1,...,xm)) as s(Σi xi gi) =Σi xi s(gi) ≈⟨(x1,...,xm),b〉
because the xi’s are small.

Let g1,...,gm generate G.

Both compute an approx ofε(s,(x1,...,xm))=s(y):

Alice computes s(y)+e’and
Bob computes Σi xi bi.

Alice Bob s∈R Gx
b=fxg(s,e)= (s(g1),...,s(gm))+e

short (x1,...,xm)

y=fg(x1,...,xm)=Σi xi gi

Noisy Key-Exchange
from Lattices

This key exchange gives rise to two El
Gamal-like public-key encryption schemes,
because the lattice pairing is not symmetric.

These El-Gamal-like schemes are IND-CPA-
secure under the hardness of LWE/SIS.

Similarly, many LWE/SIS schemes can be
viewed as analogues of the RSA/DL world:
[GPV08] is a lattice analogue of Rabin’s
signature, etc.

El Gamal Encryption
from Lattices

Concrete Lattice Schemes

Encryption

NTRU [HPS1998…]: Parameters have
changed several times (Ex: decryption
failure attacks), but the core idea
remains the same. Has been standardized.

RLWE schemes: more efficient than LWE,
but stronger hardness assumption. Being
used in lattice-TLS prototypes.

Concrete Lattice Schemes

Signature

NTRU: Less succesful than encryption. The
latest version is NTRU-MLS [PQC ’14], after
deadly attacks on NSS [GJSS2001,GeSz02]
and NTRUSign [NgRe2006,DuNg12].

BLISS [DDLL2013]: the most optimized
version uses NTRU-like assumptions.

For now, Fiat-Shamir signatures are more
efficient than Hash-and-Sign signatures…

Cryptanalysis of Lattice-
based Cryptography

SVP Algorithms

Polynomial-time approximation algorithms.

The LLL algorithm [1982].

Block generalizations by [Schnorr1987],
[GHKN2006], [Gama-N2008], [MiWa2016].

Exponential exact algorithms.

Polynomial-space: Enumeration [Kannan1983]
and pruning variants etc.

Exponential-space: Sieving [AKS2001], [MiVo10]

Maths vs Algorithms

Maths: Proving the existence of short
lattice vectors i.e. upper bounds on
Hermite’s constant.

Algorithms: Finding short or shortest lattice
vectors.

Maths vs Algorithms

Three mathematical inequalities have been
turned into efficient algorithms.

Hermite’s inequality: the LLL algorithm.

Mordell’s inequality: blockwise algorithms.

Minkowski’s inequality (Mordell’s proof)

Worst-case to average-case reductions

Sieve algorithms [ADRS15]

Hermite’s Inequality and
the LLL Algorithm

1773

1850

1982

Lagrange

Hermite

Short Lattice Vectors

[Lagrange1773]: In any 2-dim lattice L,
there is a nonzero vector of norm
≤ (4/3)1/4 vol(L)1/2.

[Hermite1850]: In any d-dim lattice,
there is a nonzero vector of norm
≤ (4/3)(d-1)/4 vol(L)1/d

�
�2 =

�
4
3

⇥1/4

⇥
�d �

�
4
3

⇥(d�1)/4

=
⇥

�2
d�1

Finding Short Lattice Vectors

[Lagrange1773]’s algorithm efficiently
outputs a nonzero vector of norm
≤ (4/3)1/4 vol(L)1/2.

[Hermite1850] gives an implicit
(inefficient) algorithm to output a
vector of norm ≤ (4/3)(d-1)/4 vol(L)1/d

�
�2 =

�
4
3

⇥1/4

⇥
�d �

�
4
3

⇥(d�1)/4

=
⇥

�2
d�1

Th: Given ε > 0 and a d-dim lattice L, [LLL82]
finds, in time polynomial in size(lattice) and
1/ε, a basis whose 1st vector satisfies:

LLL is an algorithmic version of Hermite’s
inequality:

⇥L⇥ �
�

4
3

⇥(d�1)/4

vol(L)1/d

||b1|| ≤ (4/3+ ε)(d-1)/4 vol(L)1/d
||b1|| ≤ (4/3+ ε)(d-1)/2 ||L||

The Lenstra-Lenstra-Lovász
Algorithm (1982)

Intuition

Hermite’s inequality is based on two
ideas:

Projection: this creates a lower-
dimensional lattice.

Lifting short projected vectors

LLL adds relaxation to guarantee
polynomial time.

The Magic of LLL

One of the main reasons behind the
popularity of LLL is that it performs
“much better” than what the worst-
case bounds suggest, especially in low
dimension.

LLL: Theory vs Practice

The approx factors (4/3+ε)(d-1)/4 and (4/3+ε)(d-1)/2
are tight in the worst case: but this is only
for worst-case bases of certain lattices.

Experimentally, 4/3+ε ≈ 1.33 can be replaced by
a smaller constant ≈ 1.08, for any lattice, by
randomizing the input basis.

But there is no good explanation for this
phenomenon, and no known formula for the
experimental constant ≈ 1.08.

Illustration

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 0 20 40 60 80 100 120 140 160

H
er

m
ite

 F
ac

to
r

dimension

LLL
bound

Log(Hermite Factor)

theoretical worst-case bound

experimental value

Mordell’s
Inequality

and
Blockwise

Algorithms

Divide and Conquer

LLL is based on a local reduction in dim 2.

Blockwise algorithms find shorter vectors
than LLL by using an exact SVP-subroutine
in low dim k called the blocksize.

Even if the subroutine takes exponential
time in k, this is polynomial in d if k=log d.

Mathematical Analogy

If we show the existence of very short
lattice vectors in dim k, can we use it to
prove the existence of very short lattice
vectors in dim d > k?

[Mordell1944]’s inequality generalizes
Hermite’s inequality:

⇤
�d � ⇤

�k
(d�1)/(k�1)

⇥L⇥ � ⇤
�k

(d�1)/(k�1)vol(L)1/d

Approximation Algorithms

[LLL82] corresponds to [Hermite1850]’s inequality.

The [GamaN08] algorithm is an algorithmic
version of [Mordell1944]’s inequality.

⇥L⇥ �
�

4
3

⇥(d�1)/4

vol(L)1/d =
⇤

�2
d�1vol(L)1/d

⇥L⇥ � ⇤�k
(d�1)/(k�1)vol(L)1/d

Mordell’s Inequality (1944)

Hermite’s inequality is the k=2 particular
case of Mordell’s inequality:

All known proofs of Mordell’s inequality are
based on duality: the Gama-N algorithm
also uses duality, which provides a different
way to decrease the lattice dimension.

γd  γ(d�1)/(k�1)
k if 2 k  d

An Algorithmic Version
of Mordell’s Inequality

The algorithm of [GamaN2008] solves Hermite-
SVP with factor essentially using
a k-dim SVP-oracle.

This algorithm is to Mordell’s inequality what LLL
is to Hermite’s inequality.

By choosing an appropriate k=log d, the whole
algorithm is poly-time with a subexponential approx
factor.

p
γk

(d�1)/(k�1)

Security
Estimates

In the 1980s-1990s

Lattice algorithms were somewhat
a dark art.

It was noticed that algorithms
performed better than theoretically
expected, but it was unclear by how
much exactly.

Issues

Theory is usually insufficient: worst-case
analyses do not match experiments.

For crypto, we want more than a worst-
case bound, we would like to ``predict’’
the running times.

Much more difficult

Analogy with physics

Security Estimates

Somewhat independent of security proofs

Identify the best attack based on the
state-of-the art

Find as many attacks as possible

Identify the ``best’’ one

Select keysizes/parameters accordingly

A Core Problem

To assess the cost of a lattice attack, it is
useful to reduce it to a core problem.

The most popular core problem is the
Hermite-Approx-SVP problem:

Given a basis of a n-dim lattice L and an
approximation factor f(n), find a non-
zero v of norm ≤ f(n) vol(L)1/n.

Solving Lattice Problems In Practice

The Hermite-factor is convenient:

Run the algorithm on a random lattice.

Measure , typically exp. in d.

Performances for the main lattice problems
(SIS, LWE, etc.) can be derived [GaN08,
MiRe09...]. But maybe not so clear for
NTRU.

�⇤b1�
vol(L)1/d

Estimating Lattice Attacks

Given some lattice attack, it is often
possible to (roughly) estimate its efficiency

Assess the required Hermite-factor

If LLL is enough, assess cost(LLL)

Otherwise, assess the required BKZ-
blocksize and its cost

We only require an order of magnitude.

Predicting BKZ [ChN11]

Predict the behaviour of high-blocksize
state-of-the-art BKZ (k≥50), using an
efficient simulation algorithm: the minimum of
most k-dim blocks seems to behave like
random lattices.

�
�k

(d�1)/(k�1)

becomes roughly

GaussHeurist(k)(d�1)/(k�1)

Analogy with Factoring

When analyzing sieve algorithms (QS, NFS,
etc.), we assume heuristically that certain
numbers behave like random numbers,
when it comes to smoothness probability.

Here, we assume that certain (projected)
lattices behave like random lattices, when
it comes to the first minimum.

Illustration for Average Dim

Approx Blocksize Target H-factor
85 1.01d

106 1.009d

133 1.008d

168 1.007d

216 1.006d

286 1.005d

Are We Done?

It remains to estimate the cost of the
BKZ-subroutine: finding (nearly-)shortest
vectors in ``small’’ dimensions...

This is where things are not so clear:
optimization is difficult and there has
been progress in the past few years.

In a Nutshell
In current implementations, the SVP-
subroutine for BKZ is extreme-pruning
enumeration [GNR10].

There are ``reasonable’’ predictions [GNR10]
for this subroutine, but optimization is
unclear: lower and upper bounds in [ChN11].

Approx Blocksize Cost in core-days
140 ≤223

170 ≤249

250 ≤2135

[ChN11]
Figures

The SVP Challenges

1

10

100

1000

10000

100000

126 130 132 134 138 140 142 144 146

Pruning Discrete PruningNumber of core-days

Dimension

214 core-days,
much less
than 223

Comparison with RSA

The largest computation for the SVP
challenges is for dim 138 :
66,000 core-days ≈ 263 clock cycles.

This is 11 times cheaper than RSA-768 =
730,000 core-days ≈ 267 clock cycles.

The 140-dim computation confirms that
the upper bounds of [ChN11] are only
upper bounds.

State-of-the-Art

We understand reasonably well the best
lattice algorithms: we can guess the
approximate quality and the approximate
running time for a given set of parameters.

But we don’t know well how to optimize the
selection of parameters, and there might be
improvements for the subroutine: the latest
SVP records use a different form of pruned
enumeration.

Impact

We should be conservative: security
margin. Fortunately, only a major
improvement in blocksize can impact H-
factor estimates: an order of magnitude
for the blocksize is sufficient.

Security estimates are tricky, especially
for high security levels like 256-bit
security: already non-trivial for RSA.

The Importance of Numerical
Challenges

Challenges are very useful to check the
state-of-the-art

NTRU
Challenges

Conclusion

Design

RSA/DL works in certain finite (abelian) groups G.

Lattice cryptography works in (abelian) finite
quotient groups G’=Zn/L.

The trapdoor is a secret representation of G’.

G’ may be much bigger than G, but has cheaper
operations.

Noise and small preimages require to adapt
RSA/DL constructions.

Design

Lattice cryptography is different from
classical public-key cryptography, but
there are also many similarities.

Making analogies hopefully helps our
understanding.

Trends in Design

More and more classical PK schemes have
been adapted to the lattice setting.

Can all be adapted?

A few lattice schemes achieve new
functionalities (FHE, multilinear maps, general
attribute-based encryption).

Can they be achieved without lattices?

Cryptanalysis

There has been significant progress in
lattice algorithms in the past 10 years.

It is a positive sign that the problem is
attracting more and more attention.

On the other hand, how are we going to
model future progress in security
estimates?

Quantum Cryptanalysis

There are very few examples of
quantum algorithms... especially in
cryptanalysis.

Until we have a quantum computer to
play with, it will be difficult to know
the true power of quantum
computers.

Security

How confident are we that our problems
are resistant to quantum computers?

The most efficient lattice-based
cryptosystems use special lattices like
ideal lattices.

How much can we trust our security
estimates? How precise are they?

Challenges

Post-quantum cryptography is a
revolution

There is a lot of exciting work to do

Thank you for your attention...

Any question(s)?

