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Opening

It is an exciting time, ten years after 
the 1st Post-Quantum Crypto 
conference.


A competition is likely to significantly 
improve the state-of-the-art.
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Lattices 



The Ubiquity of Lattices

In mathematics


Algebraic number theory, Algebraic 
geometry, Sphere packings, etc.


Fields medals: G. Margulis (1978), E. 
Lindenstrauss and S. Smirnov (2010), M. 
Bhargava (2014).



Applications in computer science, statistical 
physics, etc.



What is a Lattice?

An infinite arrangement of “regularly 
spaced” points



What is a Lattice?

A lattice is a discrete subgroup of Rⁿ, or the 
set L(b1,...,bd) of all linear combinations ∑xibi 
where xi∈Z, and the bi’s are linearly 
independent.
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Integer Lattices

A (full-rank) integer lattice is any subgroup 
L of (Zd,+) s.t. Zd/L is finite.



A lattice is infinite, but lattice crypto 
actually uses the finite abelian group Zd/L: 
it works modulo the lattice L.
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Lattice Invariants

The dim is the dim of span(L).


The (co-)volume is the volume of any basis 
parallelepiped: can be computed in poly-time.  
Ex: vol(Zn)=1.
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The Gaussian Heuristic

The volume measures the density of 
lattice points.


For “nice” full-rank lattices L, and “nice” 
measurable sets C of Rn:

Card(L ⇥ C) � vol(C)
vol(L)



Volume of Balls

The volume of the n-dim ball of radius R is:

Vn(R) =
⇡n/2
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Short Lattice Vectors

Any d-dim lattice L has exponentially 
many vectors of norm ≤



In a random d-dim lattice L, all non-
zero vectors have norm ≥

O
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Hermite’s Constant (1850)

This is the “worst-case” for short 
lattice vectors.


Hermite showed the existence of this 
constant:

p
�d = max

L

min~v2L,~v 6=0 k~vk
vol(L)1/d



Lattices and Complexity

Since 1996, lattices are very trendy in 
complexity (STOC/FOCS): classical and quantum. 



Depending on the approximation factor with 
respect to the dimension:



NP-hardness



non NP-hardness (NP∩co-NP)



worst-case/average-case reduction



cryptography



polynomial-time algorithms

O(1)
√n

O(n logn)

1

∞2O(n log log n/logn)
nO(1)



The Shortest Vector Problem (SVP)

Input: a basis of a d-dim lattice L


Output: nonzero v∈L minimizing ||v||. 



Approx: ||v||≤f(d) ||w|| for all non-zero w∈L.
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Lattice-based
Cryptography



Lattice-based Cryptography

RSA uses large finite (abelian) groups G=(Z/NZ)x             
(2048 bits, 4096 bits…). To speed things up:



Elliptic curve crypto uses smaller groups, 
whose operations are more expensive.



Lattice cryptography uses larger groups, but 
whose operations are much cheaper.



Lattice-based Cryptography:  
the Pros

Can be more efficient than


Potentially resistant to quantum computers. 
Several groups are working on a lattice-TLS.


Can have security properties based on 
worst-case assumptions.


Very trendy. Recent breakthroughs: fully 
homomorphic encryption, multilinear maps 
and obfuscation.



Lattice-based Cryptography:  
the Cons

Apart from NTRU, few concrete proposals 
of parameter sets: practicality is often 
unclear.


Gain might only be asymptotic.



Lattices in Cryptology

Three years stand out:



1982: First use of lattices in 
cryptanalysis: knapsack cryptosystems.



1996: First crypto schemes based on 
hard lattice problems: NTRU, Ajtai-
Dwork, GGH…



2009: Fully-homomorphic encryption 
based on lattices.



Lattice-based Crypto

Somewhat a revival of knapsack crypto 
(MerkleHellman78...)


Two Families:



“Theoretical”: [Ajtai96...] focus on security 
proofs.


“Applied”: [NTRU96...] focus on efficiency.



They “interact” more and more: 
[Micc02,GPV08,Gentry09,Peikert10,MiPe12...]



Lattice Problems in Crypto

In many crypto schemes, one actually deals 
with problems not defined using lattices:



SIS. 


LWE. 



Both are connected to lattice problems and 
usually presented with linear algebra: instead, 
we adopt a group-theoretical point of view, 
to clarify the use of duality.



The SIS Problem (Ajtai1996)
[Small Integer Solution]

Let (G,+) be a finite Abelian group:           
[Ajtai96] used G=(Z/qZ)n.


Pick g1,...,gm uniformly at random from G.


Goal:                                                
Find short x=(x1,...,xm)∈Zm s.t. Σi xi gi = 0.



This is essentially finding a short vector in a 
(uniform) random lattice of L(G) = { lattices 
L⊆Zm s.t. Zm/L ∼ G } 



Worst-case to Average-case 
 Reduction

[Ajtai96]: If one can efficiently solve SIS  
for G=(Z/qZ)n on the average, then one can 
efficiently find short vectors in every n-dim 
lattice. 


[GINX16]: This can be generalized to any 
finite abelian group G, provided that #G is 
sufficiently large ≥nΩ(max(n,rank(G)))                    
Note: (Z/2Z)n is not.





Duality

A character of G is a morphism from G to the 
torus T=R/Z.



G is isomorphic to its dual group Gx = 
{characters of G}.



The dual lattice of the SIS lattice 
L={x=(x1,...,xm)∈Zm s.t. Σi xi gi = 0} is              

Lx={y=(y1,...,ym)∈Rm s.t. yi≣s(gi) (mod 1)            
for some s∈Gx}



Let (G,+) be a finite Abelian group:       
[Regev05] used G=(Z/qZ)n like [Ajtai96].


Pick g1,...,gm uniformly at random from G.


Pick a random character s in Gx.


Goal: recover s given g1,...,gm and noisy 
approximations of s(g1),..., s(gm), where the 
noise is Gaussian.

The LWE Problem (Regev2005) 
[Learning with Errors]



Ex: Cyclic G

Let G = Z/qZ


Pick g1,...,gm uniformly at random mod q.     


Goal: recover s given g1,...,gm and 
randomized approximations of sg1 mod q,..., 
sgm mod q.


This is exactly a randomized variant of 
Boneh-Venkatesan’s Hidden Number 
Problem from CRYPTO ’96.



[Regev05]: If one can efficiently solve LWE 
for G=(Z/qZ)n on the average, then one can 
quantum-efficiently find short vectors in 
every n-dim lattice. 


[GINX16]: This can be generalized to any 
finite abelian group G, provided that #G is 
sufficiently large.

Worst-case to Average-case 
 Reduction



Lattice 
Cryptography:

Design



Lattice-based Crypto

Two Types of Techniques


Cryptography using trapdoors, i.e. secret 
short basis of a lattice. Similarities with 
RSA/Rabin cryptography.


Cryptography without trapdoors. Similarities 
with DL cryptography.



Case study: Encryption.



Trapdoor-based Encryption



Remember 

N=pq product of two large random primes.


ed≡1 (mod φ(N)) where φ(N)=(p-1)(q-1).



e is the public exponent


d is the secret exponent



Then m→me is a trapdoor one-way 

permutation over Z/NZ, whose inverse is 
c→cd.



Bounded Distance Decoding (BDD)

Input: a basis of a lattice L of dim d, and 
a target vector t very close to L.


Output: v∈L minimizing ||v-t||. Easy if one 

knows a nearly-orthogonal basis.

O
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Reducing Modulo a Lattice

If L is an integer lattice, the quotient Zn/L 
is a finite group, with many representations: 
lattice crypto works modulo a lattice.


We call L-reduction any efficiently 
computable map f from Zn s.t. f(x)=f(y)       
iff x-y∈L.



One-Way Functions from BDD

If BDD is hard, any public L-reduction f is 
a one-way function.



Let (t,L) be a BDD instance: t=v+e where 
v∈L and e is very short.



Then f(t)=f(e) because t-e∈L: if f is not 
one-way, then given f(e), one can recover 
e and also the BDD solution v=t-e.



Building L-Reductions

Any basis provides two L-reductions, 
thanks to Babai’s nearest plane algorithm 
and rounding-off algorithm.


NTRU encryption implicitly uses a           
L-reduction.



Ex: Babai’s rounding off

Choose f(t) in the basis parallelepiped s.t. t-f(t)∈L

t

b1

b2

t-f(t)
f(t)



Ex: NTRU Encryption

Ring R=Z[X]/(XN-1), secret key=short (f,g)∈R2, 
public key h=g/f (mod q).


A message m is a short element of R.


Its ciphertext is c=m+pr*h (mod q) where r is 
a sparse element of R. This corresponds to 
the L-reduction F(m,-r) = (m+pr*h (mod q),0) 
for the lattice L={(u,v)∈R2 s.t. u≡pv*h (mod q)}



Solving BDD by L-reduction

The L-reductions derived from Babai’s 
algorithms leave some set invariant: 
there exists D(B)⊆Zn s.t. f(x)=x for all 
x∈D(B). This allows to solve BDD when 
the error∈D(B).



The largest ball inside D(B) depends 
on the quality of the basis.



Deterministic Public-Key Encryption 
[GGH97-Micc01]

Secret key = Good basis


Public key = Bad basis


Message = Short vector


Encryption = L-reduction with the public key


Decryption = L-reduction with the secret key

O



Optimization: NTRU Encryption

Ring R=Z[X]/(XN-1), secret key (f,g)∈R2, public 
key h=g/f (mod q).


Encryption can be viewed [Mi01] as L-reducing 
a short vector with the Hermite normal form, 
where L={(u,v)∈R2 s.t. u≡pv*h (mod q)}.



Decryption is a special BDD algorithm using 
the secret key (f,g).



Trapdoor-less Encryption



Diffie-Hellman Key Exchange

Let G=〈g〉be generated by g of order q.



Both can compute the shared key gab.


This key exchange is the core of El Gamal  
public-key encryption.

Alice Boba∈R Z/qZ
ga ∈G

b∈R Z/qZ
gb ∈G



Abstracting DH

Let e:   (a,b)   ↦ gab. This map is a pairing: it                  
ddd    Zq x Zq ➝ G   is bilinear.



Let f: a  ↦ ga be the DL one-way function     
ddd   Zq ➝ G


e(a,b) can be computed using (f(a),b) or (a,f(b)), 
i.e. even if a or b is hidden by f.


Security = hard to distinguish (f(a),f(b),e(a,b)) 
from (f(a),f(b),random). This is called DDH.



DH with Lattices?

What would be the pairing?


What would be the one-way function 
to hide inputs?



Pairing from Lattices

Let g1,...,gm in G. The dual group Gx induces              
a pairing      GxxZm➝R/Z                                     
by     ε(s,(x1,...,xm)) = s(Σi xi gi)



Let y=fg(x1,...,xm)=Σi xi gi ∈G where xi’s small.                      

and b=fxg(s,e)= (s(g1),...,s(gm))+e ∈(R/Z)m, e small.



Thenε(s,(x1,...,xm)) can be computed from (s,y) or 

(b,(x1,...,xm)) as s(Σi xi gi) =Σi xi s(gi) ≈⟨(x1,...,xm),b〉
because the xi’s are small.



Let g1,...,gm generate G.



Both compute an approx ofε(s,(x1,...,xm))=s(y): 

Alice computes s(y)+e’and                           
Bob computes Σi xi bi.



Alice Bob s∈R Gx
b=fxg(s,e)= (s(g1),...,s(gm))+e

short (x1,...,xm)

y=fg(x1,...,xm)=Σi xi gi

Noisy Key-Exchange 
from Lattices



This key exchange gives rise to two El 
Gamal-like public-key encryption schemes, 
because the lattice pairing is not symmetric. 


These El-Gamal-like schemes are IND-CPA-
secure under the hardness of LWE/SIS. 


Similarly, many LWE/SIS schemes can be 
viewed as analogues of the RSA/DL world:
[GPV08] is a lattice analogue of Rabin’s 
signature, etc.

El Gamal Encryption 
from Lattices



Concrete Lattice Schemes

Encryption


NTRU [HPS1998…]: Parameters have 
changed several times (Ex: decryption 
failure attacks), but the core idea 
remains the same. Has been standardized.


RLWE schemes: more efficient than LWE, 
but stronger hardness assumption. Being 
used in lattice-TLS prototypes.



Concrete Lattice Schemes

Signature


NTRU: Less succesful than encryption. The 
latest version is NTRU-MLS [PQC ’14], after 
deadly attacks on NSS [GJSS2001,GeSz02] 
and NTRUSign [NgRe2006,DuNg12].


BLISS [DDLL2013]: the most optimized 
version uses NTRU-like assumptions.


For now, Fiat-Shamir signatures are more 
efficient than Hash-and-Sign signatures…



Cryptanalysis of Lattice-
based Cryptography



SVP Algorithms

Polynomial-time approximation algorithms.


The LLL algorithm [1982].



Block generalizations by [Schnorr1987], 
[GHKN2006], [Gama-N2008], [MiWa2016].



Exponential exact algorithms.


Polynomial-space: Enumeration [Kannan1983]  
and pruning variants etc.



Exponential-space: Sieving [AKS2001], [MiVo10] 



Maths vs Algorithms

Maths: Proving the existence of short 
lattice vectors i.e. upper bounds on 
Hermite’s constant.


Algorithms: Finding short or shortest lattice 
vectors.



Maths vs Algorithms

Three mathematical inequalities have been 
turned into efficient algorithms.



Hermite’s inequality: the LLL algorithm.


Mordell’s inequality: blockwise algorithms.


Minkowski’s inequality (Mordell’s proof)



Worst-case to average-case reductions 


Sieve algorithms [ADRS15]



Hermite’s Inequality and 
the LLL Algorithm

1773

1850

1982

Lagrange

Hermite



Short Lattice Vectors 

[Lagrange1773]: In any 2-dim lattice L, 
there is a nonzero vector of norm     
≤ (4/3)1/4 vol(L)1/2.



[Hermite1850]: In any d-dim lattice, 
there is a nonzero vector of norm      
≤ (4/3)(d-1)/4 vol(L)1/d                   
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Finding Short Lattice Vectors 

[Lagrange1773]’s algorithm efficiently 
outputs a nonzero vector of norm      
≤ (4/3)1/4 vol(L)1/2.



[Hermite1850] gives an implicit 
(inefficient) algorithm to output a 
vector of norm ≤ (4/3)(d-1)/4 vol(L)1/d                   

�
�2 =

�
4
3

⇥1/4

⇥
�d �

�
4
3

⇥(d�1)/4

=
⇥

�2
d�1



Th: Given ε > 0 and a d-dim lattice L, [LLL82] 
finds, in time polynomial in size(lattice) and 
1/ε, a basis whose 1st vector satisfies:                                     



LLL is an algorithmic version of Hermite’s 
inequality:

⇥L⇥ �
�

4
3

⇥(d�1)/4

vol(L)1/d

||b1|| ≤ (4/3+ ε)(d-1)/4 vol(L)1/d                   
||b1|| ≤ (4/3+ ε)(d-1)/2 ||L||



The Lenstra-Lenstra-Lovász 
Algorithm (1982) 



Intuition

Hermite’s inequality is based on two 
ideas:



Projection: this creates a lower-
dimensional lattice.


Lifting short projected vectors



LLL adds relaxation to guarantee 
polynomial time.



The Magic of LLL

One of the main reasons behind the 
popularity of LLL is that it performs 
“much better” than what the worst-
case bounds suggest, especially in low 
dimension.



LLL: Theory vs Practice

The approx factors (4/3+ε)(d-1)/4 and (4/3+ε)(d-1)/2 
are tight in the worst case: but this is only 
for worst-case bases of certain lattices.



Experimentally, 4/3+ε ≈ 1.33 can be replaced by 
a smaller constant ≈ 1.08, for any lattice, by 
randomizing the input basis.



But there is no good explanation for this 
phenomenon, and no known formula for the 
experimental constant ≈ 1.08.



Illustration
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Mordell’s 
Inequality 

and 
Blockwise 

Algorithms



Divide and Conquer

LLL is based on a local reduction in dim 2.


Blockwise algorithms find shorter vectors 
than LLL by using an exact SVP-subroutine 
in low dim k called the blocksize.



Even if the subroutine takes exponential 
time in k, this is polynomial in d if k=log d.  



Mathematical Analogy

If we show the existence of very short 
lattice vectors in dim k, can we use it to 
prove the existence of very short lattice 
vectors in dim d > k?


[Mordell1944]’s inequality generalizes 
Hermite’s inequality:

⇤
�d � ⇤

�k
(d�1)/(k�1)
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(d�1)/(k�1)vol(L)1/d



Approximation Algorithms

[LLL82] corresponds to [Hermite1850]’s inequality.



The [GamaN08] algorithm is an algorithmic 
version of [Mordell1944]’s inequality. 

⇥L⇥ �
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4
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Mordell’s Inequality (1944)

Hermite’s inequality is the k=2 particular 
case of Mordell’s inequality:



All known proofs of Mordell’s inequality are 
based on duality: the Gama-N algorithm 
also uses duality, which provides a different 
way to decrease the lattice dimension.

γd  γ(d�1)/(k�1)
k if 2 k  d



An Algorithmic Version 
of Mordell’s Inequality

The algorithm of [GamaN2008] solves Hermite-
SVP with factor essentially                    using 
a k-dim SVP-oracle.



This algorithm is to Mordell’s inequality what LLL 
is to Hermite’s inequality.


By choosing an appropriate k=log d, the whole 
algorithm is poly-time with a subexponential approx 
factor.

p
γk

(d�1)/(k�1)



Security 
Estimates



In the 1980s-1990s

Lattice algorithms were somewhat        
a dark art.



It was noticed that algorithms 
performed better than theoretically 
expected, but it was unclear by how 
much exactly.



Issues

Theory is usually insufficient: worst-case 
analyses do not match experiments.


For crypto, we want more than a worst-
case bound, we would like to ``predict’’ 
the running times.



Much more difficult


Analogy with physics



Security Estimates

Somewhat independent of security proofs


Identify the best attack based on the 
state-of-the art



Find as many attacks as possible


Identify the ``best’’ one


Select keysizes/parameters accordingly



A Core Problem

To assess the cost of a lattice attack, it is 
useful to reduce it to a core problem.


The most popular core problem is the 
Hermite-Approx-SVP problem:



Given a basis of a n-dim lattice L and an 
approximation factor f(n), find a non-
zero v of norm ≤ f(n) vol(L)1/n.



Solving Lattice Problems In Practice

The Hermite-factor is convenient:


Run the algorithm on a random lattice.


Measure              , typically exp. in d.



Performances for the main lattice problems 
(SIS, LWE, etc.) can be derived [GaN08, 
MiRe09...]. But maybe not so clear for 
NTRU.

�⇤b1�
vol(L)1/d



Estimating Lattice Attacks

Given some lattice attack, it is often 
possible to (roughly) estimate its efficiency



Assess the required Hermite-factor


If LLL is enough, assess cost(LLL)


Otherwise, assess the required BKZ-
blocksize and its cost



We only require an order of magnitude.



Predicting BKZ [ChN11]

Predict the behaviour of high-blocksize 
state-of-the-art BKZ (k≥50), using an 
efficient simulation algorithm: the minimum of 
most k-dim blocks seems to behave like 
random lattices.

�
�k

(d�1)/(k�1)

becomes roughly

GaussHeurist(k)(d�1)/(k�1)



Analogy with Factoring

When analyzing sieve algorithms (QS, NFS, 
etc.), we assume heuristically that certain 
numbers behave like random numbers, 
when it comes to smoothness probability.


Here, we assume that certain (projected) 
lattices behave like random lattices, when 
it comes to the first minimum.



Illustration for Average Dim

Approx Blocksize Target H-factor
85 1.01d

106 1.009d

133 1.008d

168 1.007d

216 1.006d

286 1.005d



Are We Done?

It remains to estimate the cost of the 
BKZ-subroutine: finding (nearly-)shortest 
vectors in ``small’’ dimensions...


This is where things are not so clear: 
optimization is difficult and there has 
been progress in the past few years.



In a Nutshell
In current implementations, the SVP-
subroutine for BKZ is extreme-pruning 
enumeration [GNR10].


There are ``reasonable’’ predictions [GNR10] 
for this subroutine, but optimization is 
unclear: lower and upper bounds in [ChN11].

Approx Blocksize Cost in core-days
140 ≤223

170 ≤249

250 ≤2135

[ChN11] 
Figures





The SVP Challenges
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Dimension

214 core-days, 
much less 
than 223



Comparison with RSA

The largest computation for the SVP 
challenges is for dim 138 :                
66,000 core-days ≈ 263 clock cycles.


This is 11 times cheaper than RSA-768 = 
730,000 core-days ≈ 267 clock cycles.


The 140-dim computation confirms that 
the upper bounds of [ChN11] are only 
upper bounds.



State-of-the-Art

We understand reasonably well the best 
lattice algorithms: we can guess the 
approximate quality and the approximate 
running time for a given set of parameters.



But we don’t know well how to optimize the 
selection of parameters, and there might be 
improvements for the subroutine: the latest 
SVP records use a different form of pruned 
enumeration.



Impact

We should be conservative: security 
margin. Fortunately, only a major 
improvement in blocksize can impact H-
factor estimates: an order of magnitude 
for the blocksize is sufficient.


Security estimates are tricky, especially 
for high security levels like 256-bit 
security: already non-trivial for RSA.



The Importance of Numerical 
Challenges

Challenges are very useful to check the 
state-of-the-art

NTRU
Challenges



Conclusion



Design

RSA/DL works in certain finite (abelian) groups G.



Lattice cryptography works in (abelian) finite 
quotient groups G’=Zn/L.



The trapdoor is a secret representation of G’.



G’ may be much bigger than G, but has cheaper 
operations.



Noise and small preimages require to adapt      
RSA/DL constructions.



Design

Lattice cryptography is different from 
classical public-key cryptography, but 
there are also many similarities.



Making analogies hopefully helps our 
understanding.



Trends in Design

More and more classical PK schemes have 
been adapted to the lattice setting.



Can all be adapted?                          


A few lattice schemes achieve new 
functionalities (FHE, multilinear maps, general 
attribute-based encryption).



Can they be achieved without lattices?



Cryptanalysis

There has been significant progress in 
lattice algorithms in the past 10 years.



It is a positive sign that the problem is 
attracting more and more attention.


On the other hand, how are we going to 
model future progress in security 
estimates?



Quantum Cryptanalysis

There are very few examples of 
quantum algorithms... especially in 
cryptanalysis.


Until we have a quantum computer to 
play with, it will be difficult to know 
the true power of quantum 
computers.



Security

How confident are we that our problems 
are resistant to quantum computers?



The most efficient lattice-based 
cryptosystems use special lattices like 
ideal lattices.



How much can we trust our security 
estimates? How precise are they?



Challenges

Post-quantum cryptography is a 
revolution



There is a lot of exciting work to do



Thank you for your attention... 

Any question(s)?


