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Quantum compilers

The efficiency of each step in the translation from high 
level algorithm to physical device impacts the efficiency of 
quantum attacks. 



How do quantum algorithms work?
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Quantum algorithm
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If we look at the state of the system at each step, it behaves like a classical 
randomized algorithm.
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The art of quantum algorithmics is to 
choreograph constructive interference 
on desirable outcomes and destructive 
interference on undesirable outcomes.



Bernstein-Vazirani problem

Suppose is of the form
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Bernstein-Vazirani problem
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A property of Hadamard transformation
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Simon’s problem

Suppose has the property thatXf n }1,0{:
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Simon’s algorithm
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Simon’s algorithm
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Applications of Simon’s algorithm??





Denote W(x)=W(a||c)=s
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So

where

(N.B. the “only if” part is important, at least approximately)

In other words, if W is based on the 3-round Feistel cipher, the derived 
function f will have the above property.

Simon’s algorithm will randomly sample vectors orthogonal to (1||z).
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In other words, if W is based on the 3-round Feistel cipher, the derived 
function f will have the above property, and Simon’s algorithm will randomly 
sample vectors orthogonal to (1||z).

However, if W is based on a random permutation, no such pattern 
is likely to emerge.

Thus, a quantum algorithm can efficiently distinguish a 3-
round Feistel cipher with internal permutations from a random 
permutation.

Recent work and additional references in Kaplan et al.: 
http://arxiv.org/abs/1602.05973



Generalization of Simon’s problem, 
order-finding and DLP: 
“Hidden subgroup problem”
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• A unifying framework was developed for these problems

XGf :
iff   yfxf  SySx 

GS for some

• If G is Abelian, finitely generated, and represented in a reasonable 
way, we can efficiently find S.
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Order finding (basis of quantum factoring):
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(applies more generally to finding the period of any periodic 
function f)
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Discrete Log of b=ak to base a : 
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Self-shift equivalences (Grigoriev):

nqGF )( ],...,,)[( 21 nXXXqGFX 

),...,,( 21 naaa ),...,( 11 nn aXaXP 

)},...,(),...,(
:),...,{(

111

1

nnn

n

XXPaXaXP
aa




G

f

K

Abelian Stabilizer Problem (Kitaev)



• Given any polynomial sized set of generators, we can use the Abelian
HSP algorithm to find new generators that decompose G into a direct
sum of finite cyclic groups. http://arxiv.org/abs/cs/0101004

But finding generators                         satisfying
is not always easy, e.g. for               it’s as hard as factoring N
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• Any finite Abelian group G is the direct sum of finite cyclic groups

nggg  21

nggg ,,, 21  ngggG  21
*.. NZGge 

Decomposing Abelian groups



But finding generators                         satisfying
is not always easy, e.g. for               it’s as hard as factoring N
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• Leads directly to an algorithm for computing the class group and 
class number of a quadratic number field [Watrous ‘00] (computing 
the class group of a more general number field is a much more 
difficult task).

• Decomposition of Abelian groups was also applied by 
• Friedl, Ivanyos and Santha [FIS05] to test if a finite set with 

a binary operation is an Abelian group, 
• Kedlaya [Ked06] to compute the zeta function of a genus g 

curve over a finite field Fq in time polynomial in g and q, and 
• Childs, Jao and Soukharev [CJS10] in order to construct 

elliptic curve isogenies in subexponential time.



What about non-Abelian HSP?
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• Consider the symmetric group
• Sn is the set of permutations of n elements
• Let G be an n-vertex graph

• Let
Define
hen 

where  

nSG 

}|)({ nG SGX  

  )(GfG  GnG XSf :

    KKff GG 2121  

  GGGAUTK   |)(
• So the hidden subgroup of        is the automorphism group of GGf



Dihedral Hidden Subgroup Problem
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XDf n :
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• A quantum computer can easily compute states of the form (“coset
states”) for random x:

nsxx mod,1,0 
• This can be easily converted to a state of the form 

(for random known k):
10 /2 nksie 



Dihedral Hidden Subgroup Problem
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• It is easy to find s given

10 /2 nsie 

10 /22 nsie 

10 /42 nsie 



10 /82 nsi

• Kuperberg’s sieving method 
constructs these states from

samples of

with random k.  

 nOe
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Dihedral Hidden Subgroup Problem
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• It is easy to find s given

10 /2 nsie 

10 /22 nsie 

10 /42 nsie 



10 /82 nsi

• Solving average-case subset sum 
or LWE also suffices (Regev)



Applications of Dihedral Hidden Subgroup 
Algorithm

33

• Regev:



Applications of Dihedral Hidden 
Subgroup Algorithm
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• Consider this approach to Diffie-Hellman-like key exchange:

• Group G acting on a set X
• Alice sends Bob

• Bob send Alice 

• They both compute the key

)( xg a

)( xg b

)()( xgxg baab 

0,,,1,  ZbaXxgGg n

• (Childs-Ivanyos) Can use sieving to find a,b in time  nOe

• Childs-Ivanyos also find efficient algorithms for discrete logs in 
semi-groups



Non-Abelian HSP
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• Tools include non-Abelian QFT, “pretty good” measurements, “sieving”, 
and non-trivial reductions to Abelian HSP in some cases.



Generalizations of Abelian HSP
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• Finding Hidden Shifts and Translations

• Can generalize to finding hidden “non-linear” structures. E.g. hidden 
radius problem, shifted subset problem, hidden polynomial problem

• Estimating “Gauss sums”

• Etc.



Generalizations of Abelian HSP

37

• Can view HSP has a hidden sub-lattice problem for
. 

One way to generalize the problem, is to find a hidden sub-lattice of
.

Need to define appropriate ways for specifying/approximating inputs 
and outputs. 

Applications include solving Pell’s equation, Principal Ideal Problem, 
and finding the unit group of a number field.

nZZZZ  

nRRRR  



(borrowed from Fang Song, SODA 2016 talk)



(borrowed from Fang Song, SODA 2016 talk, “Efficient quantum algorithms 
for the principal ideal problem and class group problem in arbitrary-degree 
number fields”, J.F. Biasse and F. Song)



(borrowed from Fang Song, SODA 2016 talk)



41

QUANTUM SEARCHINGQUANTUM SEARCHING



Searching problem
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Consider

Given
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Application
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Consider a 3-SAT formula
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Running times
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Parallelizing Brute-Force Search
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M

n2
Given M parallel quantum processors, finding an n-bit key requires time 
(measured in terms of function evaluations):
http://arxiv.org/abs/quant-ph/9711070

Classical 
running time
(1 processor)

Classical 
running time
(240

processors)

Quantum 
running time
(1 processor)

Quantum 
running time
(240

processors)

AES-128 2128 288 264 244

e.g. Parallel quantum attacks on AES-128 (in terms of function evaluations):



Can be applied to speed up 
parts of complex classical 
algorithms, e.g. finding short 
vectors in a lattice.



Some quantum algorithms require poly(n) computational qubits and 
exp(nc) “quantumly accessible” classical bits.

On Quantum RAM

What is the cost of exp(nc) “quantumly accessible” classical bits 
compared to exp(nc) computational qubits?

For superpolynomially many queries, it’s not clear if there is much 
advantage. http://arxiv.org/abs/1502.03450



Generalization: Amplitude Amplification

Consider any algorithm        that successfully guesses a solution to

with probability 

A
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Analysis

Let S = cost of implementing - “sampling” cost

Let C = cost of implementing - “checking” cost

A

Let p = probability that a sample is a solution.

fU

A classical search would have expected cost

A quantum search would have expected cost 
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Element Distinctness
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• Consider 

• Find such that   

• Classically (in the worst case) this takes                evaluations of 
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)(NO f



Element Distinctness
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• Let  sample random elements  

• Thus 

• Checking if any of the samples are not distinct over the range of f can be 
done in time   

• Thus 
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QUANTUM
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Quantum walk algorithms
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• Can generalize notion of classical random walks

• Can get up to quadratic speed-up for “mixing time”

• Can get up to an exponential speed-up for “hitting time” (“glued-trees” 
problem)

• Applications include:
Element distinctness, triangle-finding, element k-distinctness, AND-OR 
trees, MIN-MAX trees, etc.



Analysis of search by walk

Let S = “set-up” cost
Let C = “checking” cost
Let U = “update” cost

Let ε = probability that a sample is a solution.
Let δ = spectral gap of random walk matrix

A classical search would have expected cost

A quantum search would have expected cost 
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Element Distinctness by Quantum Walk
(Ambainis)

Set-up = sample elements    

Check = check for non-distinct elements in the current sample

Update = remove one element and replace with an new random element
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Quantum walk running time is 



Collision-Finding by Quantum Walk (Ambainis)

Set-up = sample elements    

Check = check for a collision in the current sample

Update = remove one element and replace with an new random element
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Quantum walk running time is 



Comparison to Classical Parallel 
Collision Finding

Classical parallel collision-finding heuristics using processors find
collisions in time
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http://link.springer.com/article/10.1007/PL00003816 (van Oorschot-Wiener)

http://cr.yp.to/hash/collisioncost-20090823.pdf (Bernstein)

https://uwspace.uwaterloo.ca/handle/10012/6200 (Jeffery)

Can parallel quantum collision do better?
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OTHER ALGORITHMS
AND ALGORITHIC
PARADIGMS

OTHER ALGORITHMS
AND ALGORITHIC
PARADIGMS



Hamiltonian simulation
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Under appropriate conditions we can efficiently 
approximate some properties of 

iHte

One application, in combination with eigenvalue estimation and 
other tools, is to determine some properties of the solution to 
(“well-conditioned”) sparse linear equations (by Harrow, 
Hassidim and Lloyd, 2008).



And more…
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• Adiabatic algorithms

• Topological algorithms

• Span programs

• Etc.



ny progress in developing new quantum algorithms?

http://math.nist.gov/quantum/zoo/ (maintained by S. Jordan)
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Thank you!
Feedback welcome: mmosca@uwaterloo.ca


