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Superconducting Circuits for Quantum
Information: An Outlook

M. H. Devoret™? and R. ]. Schoelkopf**

‘ Fault-tolerant quantum computation

Algorithms on multiple logical qubits

Operations on single logical qubits

ﬁ Logical memory with longer lifetime than physical qubits

Complexity

QND measurements for error correction and control

Algorithms on multiple physical qubits

Operations on single physical qubits
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Fig. 1. Seven stages in the development of quantum information processing. Each advancement requires
mastery of the preceding stages, but each also represents a continuing task that must be perfected in
parallel with the others. Superconducting qubits are the only solid-state implementation at the third
stage, and they now aim at reaching the fourth stage (green arrow). In the domain of atomic physics and
quantum optics, the third stage had been previously attained by trapped ions and by Rydberg atoms. No
implementation has yet reached the fourth stage, where a logical qubit can be stored, via error correction,
for a time substantially longer than the decoherence time of its physical qubit components.
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)) Quantum compilers

The efficiency of each step in the translation from high
level algorithm to physical device impacts the efficiency of
quantum attacks.

Quantum algorithm

Logical circuits N

Fault tolerant
gate set

Fault tolerant protocol /_=
Quantum control

Physical system
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How do quantum algorithms work"?
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) Quantum algorithm
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»)

If we look at the state of the system at each step, it behaves like a classical

randomized algorithm.
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1)

The art of quantum algorithmics is to

choreograph constructive interference
on desirable outcomes and destructive
Interference on undesirable outcomes.
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) Bernstein-Vazirani problem

Suppose f - {(),1}” — {(),1} is of the form T (X) — a- X
for some q c {O,l}n

Given ‘ X>‘ C> Ig ‘ X>‘ CD f (X)> determine

a=aa,...a

n
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) Bernstein-Vazirani problem
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)) Generally
f:2, = Z7 X > MX

0) F B
0) —F
0) —F
d) —F
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)) A property of Hadamard transformation

Consider S < Zzn

St ={t:tez,",st=0VseS|

L et ‘y+S> Z\F‘y+8

seS

1)¥*
Then H®n y—|—S (
)= ; s Y

I I I % waTerico | 1QC &



)) Simon’s problem

Suppose f :{O,l}n —> X has the property that

f(x)=f(y) # X+S=y+S

n
For some “hidden subgroup” S < Z >

leen H‘ >‘ f(X)> find S
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) Simon’s algorithm

Sample tlatza' ' '9tn+0(1) €S
Solve B t1 ‘( . /O\
t, 0
: S|=].
\ /
B tn+O(1) | \O}

I Q C Quantum
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) Applications of Simon’s algorithm??

Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer”

Peter W. Shor'

n 1996

computer. Indeed, while Bernstein and Vaziarni's problem appears contrived, Simon’s
problem looks quite natural. Simon’s algorithm inspired the work presented in this
paper.
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ISIT 2010, Austin, Texas, U5 A, Jume 13 - 18, 2010

Quantum Distinguisher Between the 3-Round
Feistel Cipher and the Random Permutation

Hidenori Kuwakado Masakatn Morii

Graduate School of Engineering Graduate School of Engineering
Kobe University Kobe University
1-1 Rokkodai-cho Nada-ku Kobe 657-8501, Japan 1-1 Rokkodai-cho Nada-ku Kobe 657-8501, Japan
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FP(x) = FPlall c) —

Denote W(x)=W(al||c)=s Fig. 1. The 3-round Feistel cipher with internal permutations,
FP{a| c)=2| t
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)) W (ac)=c @ P,(a® R/(c))
et a,e{01}",a= L, be{01}

W(a|a)® s if b=0

- f(bHa):iW(aH,B)@a if b=1

then  f(ba)=f(bla’) iff (b
where 2 =R (a)®R(5)
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»)

o f(bla)=f(ba’) iff (b
where 7 =R (a)® R ()

(N.B. the “only if” part is important, at least approximately)

)® (oa) = i2)or (o)

In other words, if W is based on the 3-round Feistel cipher, the derived
function f will have the above property.

Simon’s algorithm will randomly sample vectors orthogonal to (1]|z).
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»)

In other words, if W is based on the 3-round Feistel cipher, the derived
function f will have the above property, and Simon’s algorithm will randomly
sample vectors orthogonal to (1]|z).

However, if W is based on a random permutation, no such pattern
is likely to emerge.

Thus, a quantum algorithm can efficiently distinguish a 3-
round Feistel cipher with internal permutations from a random
permutation.

Recent work and additional references in Kaplan et al.:
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Generalization of Simon’s problem,
) order-finding and DLP:
“Hidden subgroup problem”

« Aunifying framework was developed for these problems

f .G —- X

f(x)= f(y) i x+S =y+S
forsome § < (35

- If G is Abelian, finitely generated, and represented in a reasonable
way, we can efficiently find S.
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1)

Order finding (basis of quantum factoring):

G =7 X any group
f(x)=aX

K =1’

(applies more generally to finding the period of any periodic
function f)

I I I WATERLOO
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1)

Discrete Log of b=ak to base a
G=~4 xZ, X any group
f(x,y)=aXp”
K =((k.-1)
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)

Self-shift equivalences (Grigoriev):

G =GF(0)" X=GF@Q)[X,,X,,... X, ]
f(a,a,,.,a)=P(X, —-a,..,X, —a,)
K ={(a,,...,a,):

P(X,—-a,.,X, —a)=P(X,,... X )}

Abelian Stabilizer Problem (Kitaev)
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1)

Decomposing Abelian groups

 Any finite Abelian group G is the direct sum of finite cyclic groups

(9,)®(9,)®-®(9,)

9,,9,,--,0, G:<g1>@<g2>@'”®<gn>
eg. G=2,

« Given any polynomial sized set of generators, we can use the Abelian
HSP algorithm to find new generators that decompose G into a direct
sum of finite cyclic groups.

W UNIVERSITY OF I CIQn:t::;z::.‘r
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»)

« Leads directly to an algorithm for computing the class group and
class number of a quadratic number field [Watrous ‘00] (computing
the class group of a more general number field is a much more
difficult task).

« Decomposition of Abelian groups was also applied by

 Friedl|, Ivanyos and Santha [FIS05] to test if a finite set with
a binary operation is an Abelian group,

« Kedlaya [Ked06] to compute the zeta function of a genus g
curve over a finite field Fg in time polynomial in g and g, and

« Childs, Jao and Soukharev [CJS10] in order to construct
elliptic curve isogenies in subexponential time.

Institute for
Quantum
Computing 28
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What about non-Abelian HSP?

»

« Consider the symmetric group G = Sn
« S, is the set of permutations of N elements
« Let G be an N-vertex graph

o Lt Xe =m(G) [ e}
fo:S, > Xy fo(7)=7(G)
fol(7))=fo(7,) & 7K = 7,K
K =AUT(G) = {7 | 7(G)=G}

So the hidden subgroup of fG is the automorphism group of G

W UNIVERSITY OF I Cg:t::;::?‘r
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Dihedral Hidden Subgroup Problem

f:D, — X
f(b,x)=f(b',x") < (b-b",x=x") € {(0,0),(1,5)}

A quantum computer can easily compute states of the form (“coset
states”) for random x:

0,X)+|1,x+s modn)
This can be easily converted to a state of the form

(for random known K): ‘ O> Le 2 7iks /N ‘ 1>

UNIVERSITY OF Institute for
I I I Bwaterioo | 1QCE




Dihedral Hidden Subgroup Problem

* ltis easy to find S given - Kuperberg’'s Sieving method
5 s /N constructs these states from
0)+e’™" 1)
Ol+/n
e (\/7) samples of

O>+627zi28/n‘1>
‘O>+ezni4s/n‘1>
‘O>+27zi85/n ‘1>

‘O>_|_ez;ziks/n‘1>

with random k.

W UNIVERSITY OF I C IQn:t:::: fr:‘r
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Dihedral Hidden Subgroup Problem

« Itis easy to find S given « Solving average-case subset sum
o or LWE also suffices (Regev)
O> + e 271S/ N ‘ 1>

O>+627zi28/n‘1>
‘O>+ezni4s/n‘1>
‘O>+27zi83/n ‘1>

I I I WATERLOO

I C Institute for
Quantum
Computing 32



Applications of Dihedral Hidden Subgroup

)) Algorithm

* Regev:

THEOREM 1.1. If there exists a solution to the dihedral coset problem with failure
1 .
parameter f then there exrists a quantum algorithm that solves the ©(n2*2)-unique-

SVP.

nstitute for
Quantum
Computing
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Applications of Dihedral Hidden

)) Subgroup Algorithm

Consider this approach to Diffie-Hellman-like key exchange:

Group GactingonasetX ¢ e G, g” =1, Xxe X,a,be Z_,
Alice sends Bob ga(x)

Bob send Alice ¢ ° (X)
They both compute the key g ab (X)=g¢ ba (X)
(Childs-lvanyos) Can use sieving to find a,b in time eo (\/ﬁ)

Childs-lvanyos also find efficient algorithms for discrete logs in
semi-groups

I I I WATERLOO
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Non-Abelian HSP

1)

« Tools include non-Abelian QFT, “pretty good” measurements, “sieving”,
and non-trivial reductions to Abelian HSP in some cases.

I C Institute for
Quantum
Computing 35
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Generalizations of Abelian HSP

1)

Finding Hidden Shifts and Translations

Can generalize to finding hidden “non-linear” structures. E.g. hidden
radius problem, shifted subset problem, hidden polynomial problem

Estimating “Gauss sums”

Etc.

I C Institute for
Quantum
Computing 36
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Generalizations of Abelian HSP

»)

« Can view HSP has a hidden sub-lattice problem for

/IR7ZR---RZ=272"
One way to generalize the problem, is to find a hidden sub-Ilattice of

R®R®---®R=R"

Need to define appropriate ways for specifying/approximating inputs
and outputs.

Applications include solving Pell’'s equation, Principal Ideal Problem,
and finding the unit group of a number field.

I I I WATERLOO
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Continuous HSP on R™

= (unit vectors|-) ina cnmpilex vector space)

Given f: R™ — {quantum states}, s.t.: 3 discrete H < R™,
1. (Periodic) x—y€EH=|f())=|f®)). R ] =
2. (Pseudo-injective) x—yfarfromH=|f(x))L|f()) = t(?fﬂg@)} <e.

3. (Lipschitz continuitiy) x —y cdlosetoH = |f(x)) = |f(¥)) IFGOY = IFOMI
<a-|lx=yll

Goal: Find (hidden subgroup) H.

[EHKS14] 3 efficient quantum algorithm solving continuous HSP on R™ .

N.B.: H isa Lattice
L(B) ={a1v1 + -+ apvy:a; € Z} € R™
- BasisB:{v; e R™:i=1,..,m}

» L has (infinitely) many bases /’" :

(borrowed from Fang Song, SODA 2016 talk)

W UNIVERSITY OF I Clqnf::gﬁ,f:‘r
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exponentially

Which problems have' faster | .11 ) algorithms
- than classical algorithms?

3 Poly-time quantum algorithms for:
= Factoringand discrete logarithm [Shor'gs]

= Basic problemsin computational algebraic number theory

- Unit group in number fields = Constant degree [Hallgren‘o2’05,SchmidtVollmeros]
» Arbitrary degree [EHKS'14]

« Principal Ideal Problem (PIP) » Constantdegree number fields [H'0205,5V'05]
& Class group problem : arbitrary degree!  ———

Best known classical algorithms need (at least) sub-exponential time

(borrowed from Fang Song, SODA 2016 talk, “Efficient quantum algorithms
for the principal ideal problem and class group problem in arbitrary-degree
number fields”, J.F. Biasse and F. Song)
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Results and Implications

= Efficientquantum algorithmsfor
several basic problems in number
fields of arbitrary-degree

= Examples of quantum exponential

speedup
= Minor: converting solutionsinto

compact representation

Application: PIP algorithm can be used to break classical crypto

> = Smart-V Fully Homomorphic Encryption, GargGH multilinear mapping scheme, ... [CGS14,CDPR15,BS15]
* Previously considered quantum-safe (based on ideal lattice problems instead of factoring/DL)

(borrowed from Fang Song, SODA 2016 talk)
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Searching problem

1)

Consider

f:{0,1}" — {0,1}

Given

U, :[x)]0) = [x)] £00)

Find an x satisfying f(x) = 1

I I I WATERLOO
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1)

Application

Consider a 3-SAT formula

O=C, AC, A---AC,

Cj :(yj,l VYiaV yj,z)

yj,k = {X19X29...9Xn9Y19Y29.°'9

X

0y

For a given assignment x = X X, X

n

1 if X satisfies @

fo (%) =

O otherwise

% WATERLOO

1QC
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Running times

1)

Suppose there are t solutions to (x) =1

2n
Can find a solution to f (X) = lusing O T applications of U ¢
~ [2"
and O T other operations (without knowing t).

I C Institute for
Quantum
Computing 44
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Parallelizing Brute-Force Search

Given M parallel quantum processors, finding an n-bit key requires time

(measured in terms of function evaluations): o
O . [=—
M

e.g. Parallel quantum attacks on AES-128 (in terms of function evaluations):

Classical Classical Quantum Quantum
running time running time running time running time

(1 processor) | (240 (1 processor) (240
processors) processors)

AES-128 2128 288 264 244

I I I % WATERLOO
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Des. Codes Cryptogr. (2015) 77:375-400 @ S
DOI 10.1007/510623-015-0067-5

Finding shortest lattice vectors faster using quantum

search .
Can be applied to speed up
Thijs Laarhoven! . Michele Mosca?34 . partS of COmpleX classical
. 5 . . .
Joop van de Pol algorithms, e.g. finding short

vectors in a lattice.

Received: 15 October 2014 / Revised: 12 March 2015 / Accepted: 16 March 2015 /
Published online: 14 Apnl 2015
& The Author(s) 2015. This article is published with open access at Spnngerlink.com

Abstract By applying a quantum search algorithm to various heuristic and provable sieve
algorithms from the literature, we obtain improved asymptotic quantum results for solving the
shortest vector problem on lattices. With quantum computers we can provably find a shortest
vector in time 21799400 improving upon the classical time complexities of 22463 +en) of
Pujol and Stehlé and the 227 +2") of Micciancio and Voulgaris, while heuristically we expect
to find a shortest vector in time 292682+ improving upon the classical time complexity of
20.298n+0(n) of |aarhoven and De Weger. These quantum complexities will be an important
guide for the selection of parameters for post-quantum cryptosystems based on the hardness
of the shortest vector problem.

I I I B vikrerico [ 1QC 5



On Quantum RAM

1)

Some quantum algorithms require poly(n) computational qubits and
exp(n°®) “quantumly accessible” classical bits.

What is the cost of exp(n°®) “quantumly accessible” classical bits
compared to exp(n®) computational qubits?

For superpolynomially many queries, it's not clear if there is much
advantage.

Institute for
Quantum
Computing
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)) Generalization: Amplitude Amplification

Consider any algorithm A that successfully guesses a solution to
f (X)=1 with probability ]

Quantum Amplitude Amplification finds a solution to f (X) =1

. 1 .
using O[] (quantum) applications of A and of | f

Jp
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)) Analysis

Let S = cost of implementing A - “'sampling” cost

Let C = cost of implementing U . “checking” cost

Let p = probability that a sample is a solution.

(s+C)
A classical search would have expected cost B T
1

A quantum search would have expected cost _(5 n C)

Jp

I I I WATERLOO
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Element Distinctness

1)

» Consider f :{0,1}" > X
+ Find X#Y suchthat f(X)=f(y)

» Classically (in the worst case) this takes  O( N ) evaluations of f

I C Institute for
Quantum
Computing 50
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Element Distinctness

1)

Let A sample v N random elements f(Xj)
|

Thus P zﬁ

Checking if any of the samples are not distinct over the range of f can be
done intime

Ol

Th
® L (s+C) EO(N/)

(

I I I WATERLOO
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WALK-BASED
QUANTUM
SEARCHING
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Quantum walk algorithms

»)

« Can generalize notion of classical random walks
« Can get up to quadratic speed-up for “mixing time”

« Can get up to an exponential speed-up for “hitting time” (“glued-trees”
problem)

Applications include:

Element distinctness, triangle-finding, element k-distinctness, AND-OR
trees, MIN-MAX trees, etc.

I I I WATERLOO
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)) Analysis of search by walk

Let S = “set-up” cost
Let C = “checking” cost
Let U = “update” cost

Let € = probability that a sample is a solution.
Let & = spectral gap of random walk matrix

—U +C

1(1
A classical search would have expected cost S +g( S j

A quantum search would have expected cost S 4 1 ( 1 U +Cj

Ve Vo

I I I WATERLOO
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(Ambainis)

)) Element Distinctness by Quantum Walk

2
Set-up = sample N”> elements f(xj)
Check = check for non-distinct elements in the current sample

Update = remove one element and replace with an new random element

Quantum walk running time is 5(N %)

I I I WATERLOO
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)) Collision-Finding by Quantum Walk (ambainis)

1
Set-up = sample N”> elements f (Xj)
Check = check for a collision in the current sample

Update = remove one element and replace with an new random element

Quantum walk running time is G(N %)

I I I WATERLOO
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Comparison to Classical Parallel
)) Collision Finding

1
Classical parallel collision-finding heuristics usingO(N 3) processors find
collisions in time 6(N %)

(van Oorschot-Wiener)
(Bernstein)
(Jeffery)

Can parallel quantum collision do better?

I I I WATERLOO
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1)

OTHER ALGORITHMS
AND ALGORITHIC
PARADIGMS

W IIIIIIIIIIII I C IQn:t:::: fr:‘r
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Hamiltonian simulation

1)

Under appropriate conditions we can efficiently
approximate some properties of iHt
e™|¢)

One application, in combination with eigenvalue estimation and
other tools, is to determine some properties of the solution to

(“well-conditioned”) sparse linear equations (by Harrow,
Hassidim and Lloyd, 2008).

I I I WATERLOQg
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And more...

1)

Adiabatic algorithms

Topological algorithms

Span programs
Etc.

I C Institute for
Quantum
Computing 60
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(maintained by S. Jordan)

Quantum algoerithms for algebraic problems

Ancrew M. Childs™ Algorithms for Quantum Computers
Depariment of Combinatercs & Optimization and insfitute far Quantum Computing
Umiversify of Walerlos, Walerlos, Ortanis, Canade M2L 357
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Departments of Computer Seance and Physics
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