Quantum Collision-Resistance of Non-Uniformly Distributed Functions

Made by: Ehsan Ebrahimi Targhi

University of Tartu

PQCrypto Conference, Fukuoka, Japan 24 February 2016 Joint work with Dominique Unruh and Gelo Tabia

University of Tartu

Made by: Ehsan Ebrahimi Targhi

The problem: (Quantum Collision)

Made by: Ehsan Ebrahimi Targhi

Quantum Collision-Resistance of Non-Uniformly Distributed Functions

The problem: (Quantum Collision)

Question: How many quantum queries are needed to output a collision? (quantum query complexity point of view) or What is the maximum success probability given the specific number of queries? (quantum query solvability (Zhandry))

Made by: Ehsan Ebrahimi Targhi

Quantum Collision-Resistance of Non-Uniformly Distributed Functions

Why for random function?

Collision-resistant hash functions are fundamental in cryptology.

Made by: Ehsan Ebrahimi Targhi

Quantum Collision-Resistance of Non-Uniformly Distributed Functions

Collision-resistant hash functions are fundamental in cryptology.

In the random oracle model, they model as random functions.

Made by: Ehsan Ebrahimi Targhi

Quantum Collision-Resistance of Non-Uniformly Distributed Functions

Collision-resistant hash functions are fundamental in cryptology.

- **1** In the random oracle model, they model as random functions.
- In most cryptographic applications, they need to be compression functions.

University of Tartu

Made by: Ehsan Ebrahimi Targhi

Collision-resistant hash functions are fundamental in cryptology.

- **1** In the random oracle model, they model as random functions.
- In most cryptographic applications, they need to be compression functions.

Recall: By birthday attack, the probability of success is roughly 1/2 when $q = \Theta(M^{1/2})$ for a classical adversary.

University of Tartu

Made by: Ehsan Ebrahimi Targhi

Theorem

Let $f : [N] \to [M]$ be a random function. Then any quantum algorithm making q number of queries to f outputs a collision for f with probability at most $\frac{C(q+2)^3}{M}$ where C is a universal constant.¹

 $\Rightarrow \Omega(M^{1/3})$ queries are needed to output a collision.

¹[Zhandry, Quantum Information & Computation, 2015] =>

Made by: Ehsan Ebrahimi Targhi

Quantum Collision-Resistance of Non-Uniformly Distributed Functions

Theorem

Let $f : [N] \to [M]$ be a random function. Then any quantum algorithm making q number of queries to f outputs a collision for f with probability at most $\frac{C(q+2)^3}{M}$ where C is a universal constant.¹

 $\Rightarrow \Omega(M^{1/3})$ queries are needed to output a collision.

Question: What if outputs of function f are chosen according to a non-uniform distribution.

¹[Zhandry, Quantum Information & Computation, 2015] 🗇 🛌 🖘 🤞

Made by: Ehsan Ebrahimi Targhi

Motivation for non-uniform functions:

In some cryptographic constructions, the combination of a truly random function and encryption function has to be collision-resistant:

Made by: Ehsan Ebrahimi Targhi

Quantum Collision-Resistance of Non-Uniformly Distributed Functions

Motivation for non-uniform functions:

- In some cryptographic constructions, the combination of a truly random function and encryption function has to be collision-resistant:
 - Fujisaki-Okamoto transform:

$$\mathsf{Enc}_{\mathsf{pk}}^{\mathsf{hy}}(\mathsf{m};\delta) = \left(\mathsf{Enc}_{\mathsf{pk}}^{\mathsf{asy}}\left(\delta; H\big(\delta \| \mathsf{Enc}_{\mathsf{G}(\delta)}^{\mathsf{sy}}(\mathsf{m})\big)\right), \ \mathsf{Enc}_{\mathsf{G}(\delta)}^{\mathsf{sy}}(\mathsf{m})\right).$$

• $Enc_{pk}^{asy} \circ H$ has to be collision-resistant.

University of Tartu

Made by: Ehsan Ebrahimi Targhi

$$H_{\infty}(D) = -\log \max_{m \in [M]} \Pr[D(m)]$$

Theorem

Let $f : [N] \to [M]$ be a function whose outputs are chosen according to a distribution with min-entropy k. Then any quantum algorithm A making q queries to f returns a collision for f with probability at most $\frac{C'(q+2)^{9/5}}{2^{k/5}}$ where C' is a universal constant.

 $\Rightarrow \Omega(2^{k/9})$ queries are needed to output a collision.

University of Tartu

Made by: Ehsan Ebrahimi Targhi

Preliminaries (for proof):

Definition (Universal Hash Function²)

A family of functions $H = \{h : \{0,1\}^n \to \{0,1\}^m\}$ is called a universal family if for all distinct $x, y \in \{0,1\}^n$:

$$\Pr[h(x) = h(y) : h \xleftarrow{\$} H] \le 1/2^m.$$

²[Larry Carter, Mark N. Wegman, J. Comput. Syst. Sci, #979]

Made by: Ehsan Ebrahimi Targhi

Quantum Collision-Resistance of Non-Uniformly Distributed Functions

Preliminaries (Leftover Hash Lemma³):

³[Johan Håstad, Russell Impagliazzo, Leonid A. Levin, Michael Luby, 1993]

Made by: Ehsan Ebrahimi Targhi

University of Tartu

Proof sketch:

$$\begin{aligned} & \mathsf{Pr}[\mathsf{Coll}(f; A_q^f) : f \leftarrow D^X] \\ & \stackrel{(1)}{\leq} \mathsf{Pr}[\mathsf{Coll}(h \circ f; A_q^f) : f \leftarrow D^X] \\ & \stackrel{(2)}{=} \mathsf{Pr}[\mathsf{Coll}(h \circ f; B_q^{h \circ f}) : f \leftarrow D^X] \text{ (preimages of } f \text{)} \\ & \stackrel{(3)}{\cong} \mathsf{Pr}[\mathsf{Coll}(f^*; B_q^{f^*}) : f^* \xleftarrow{\$} \{\}] \text{ (LHL, } (D_1 \cong D_2 \Longleftrightarrow D_1^X \cong D_2^X)^4) \\ & \stackrel{(4)}{\cong} \text{ hard} \end{aligned}$$

We prove that $\frac{\Pr[\operatorname{Coll}(f; A_q^f) : f \leftarrow D^X] \leq O(\frac{q^{9/5}}{2^{k/5}}).$ ⁴[Zhandry, How to Construct Quantum Random Functions, FOCS, 2012] Made by: Ehsan Ebrahimi Targhi University of Tartu

Question?

Thank you for listening!

Made by: Ehsan Ebrahimi Targhi

Quantum Collision-Resistance of Non-Uniformly Distributed Functions

University of Tartu