Framework for Evaluating Software/Hardware Implementations of Post-Quantum Public-Key Algorithms Using Zynq SoC

Brian Loop, Ahmed Ferozpuri, and Kris Gaj
George Mason University
USA

http://cryptography.gmu.edu
https://cryptography.gmu.edu/athena
Motivation

• Multiple families of post-quantum cryptosystems with different performance in software & hardware at the same security level

• Early benchmarking can help focusing the attention of cryptographers & cryptanalysts on the most promising algorithms and parameter sets

• Hardware & embedded software will play major role in providing security for Internet of Things

• Complex PQC schemes provide interesting opportunities for software/hardware codesign
Our Platform - Xilinx Zynq System on Chip

- **Processing System (PS)** – Dual-core ARM microprocessor system
- **Programmable Logic (PL)** – Series 7 FPGA logic
- **Advanced eXtensible Interface 4 (AXI4)** – 4th generation of ARM high-performance interface
Two Primary Modes of Operation

Bare Metal

Linux
Two Primary Modes of Operation

<table>
<thead>
<tr>
<th>Bare Metal</th>
<th>Linux</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Full control over software execution</td>
<td>• Provides separation between software and hardware</td>
</tr>
<tr>
<td>• Very small overhead</td>
<td>• Multiple software libraries, such as OpenSSL</td>
</tr>
<tr>
<td>• Limited functionality</td>
<td>• User friendly</td>
</tr>
<tr>
<td>• Suitable for straightforward and repetitive tasks</td>
<td>• Open-source platform</td>
</tr>
<tr>
<td></td>
<td>• Constantly updated</td>
</tr>
<tr>
<td></td>
<td>• Extensively tested</td>
</tr>
<tr>
<td></td>
<td>• Wide range of applications, from supercomputers to the Internet of Things devices</td>
</tr>
<tr>
<td></td>
<td>• Possible overhead</td>
</tr>
</tbody>
</table>
Currently Investigated PQC Schemes

1. Encryption Scheme – Code-based QC-MDPC
 • Based on the McEliece PKC
 • Key sizes reduced by using the Quasi-Cyclic Moderate Density Parity-Check (QC-MDPC) codes
 • Security level: 80 bits (due to area limitations)
 • Parameters: $n_0=2$, $N=9600$, $R=4800$, $W=90$, $T=84$
 • Speed-optimized implementation based on the work by Stefan Heyse, Ingo von Maurich, and Tim Güneysu

2. Signature Scheme – Lattice-based BLISS
 • Bimodal Lattice Signature Scheme (BLISS)
 • Security level: 192 bits (BLISS-IV)
 • Parameters: $n=512$, $q=12,289$, $\delta_1=0.45$, $\delta_2=0.06$, $\alpha=0.55$, etc.
 • Security-optimized implementation based on the work by Thomas Pöppelmann, Léo Ducas, and Tim Güneysu
Hardware Accelerators

- Developed in VHDL
- Based on the open-source codes from Ruhr-University Bochum, Germany
- Standard external DMA (Direct Memory Access) cores
Software Drivers

Bare Metal
- Generated automatically by Xilinx tools

Linux
- Based on the open source driver cryptodev
 - Allows writing to and reading from the character device dev/crypto
 - Renamed pqcryptodev – custom kernel driver for performing PQC encryption/decryption
 - Middleware allowing access to the hardware cryptographic modules from user-space applications
Measured Parameters – Bare Metal & Linux

- Public Key Operation (Encryption / Signature Verification) vs. Private Key Operation (Decryption / Signature Generation)
- End-to-end execution time
 - Input Transfer
 - Hardware Accelerator
 - Output Transfer
- Maximum clock frequency
- Operations per second
- Key generation time (in software)
- Key transfer time

All times measured using a hardware AXI timer with the accuracy of 1 cycle of 100 MHz clock = 10 ns
Examples of the First Results: QC-MDPC

Bare Metal

Public Key Loading: 213 cycles = 2.1 µs
Encryption (end-to-end): 6407 cycles = 64.1 µs

Private Key Loading: 362 cycles = 3.6 µs
Decryption (end-to-end): 24048 cycles = 240.5 µs

Linux

Public Key Loading: 747 cycles = 7.5 µs Linux Overhead: 350.7%
Encryption (end-to-end): 7014 cycles = 70.1 µs 9.5%

Private Key Loading: 1222 cycles = 12.2 µs 337.6%
Decryption (end-to-end): 26038 cycles = 260.4 µs 8.3%
ZYNQ Evaluation and Development Board – ZedBoard

Remaining measurements in progress

To be reported at the upcoming FPGA conferences & ePrint

Linux on the SD card
Price < 500 USD
Academic discounts
Thank you!

Comments? Questions? Suggestions?

ATHENa: http://cryptography.gmu.edu/athena
CERG: http://cryptography.gmu.edu