May-Ozerov Algorithm for Nearest Neighbor Problem over \mathbb{F}_q and Its Application to Information Set Decoding

Shoichi Hirose

University of Fukui

Hot Topic Session PQCrypto 2016 (2016/02/24-26, Fukuoka) Information set decoding

- Algorithm for decoding random linear codes
- Generic attack on code-based cryptography

For parity check matrix H and vector x, s = Hx = He and $w_{\rm H}(e) = w$ (Permutation step)

- () Randomly permute the columns of $oldsymbol{H}$
- **2** Transform the permuted H with Gaussian elimination into

s is also transformed into $ilde{s}$ accordingly

2 (Search step) For some fixed p, search a linear combination of p columns of ${\pmb Q}$ whose Hamming distance to \tilde{s} is (w-p)

Nearest-neighbor algorithm is used for search step

Our Contribution

- Generalize May-Ozerov algorithm for NN problem over F_q
 Apply May-Ozerov NN algorithm to Stern ISD algorithm
 - Stern-MO is more efficient than Stern only if $q=2\,$

Definition $((m, \gamma, \lambda)$ -Nearest-Neighbor problem over $\mathbb{F}_q)$

- $m \in \mathbb{N}$
- $0 < \gamma < 1/2$
- $0 < \lambda < 1$

Input \mathcal{U}, \mathcal{V} and γ , where $\mathcal{U} \subset \mathbb{F}_q^m$, $\mathcal{V} \subset \mathbb{F}_q^m$ and $|\mathcal{U}| = |\mathcal{V}| = q^{\lambda m}$ Output $\mathcal{C} \subset \mathcal{U} \times \mathcal{V}$ which have $(\boldsymbol{u}^*, \boldsymbol{v}^*)$ s.t. $w_{\mathrm{H}}(\boldsymbol{u}^* - \boldsymbol{v}^*) = \gamma m$ Repeat $m^{O(q^3)}$ times:

1 (Randomize & filter) Select a random permutation matrix P and a random balanced vector r, and compute

$$ilde{\mathcal{U}} \leftarrow \{ ilde{m{u}} \,|\, ilde{m{u}} \in m{P}\mathcal{U} + m{r} \wedge (ilde{m{u}} ext{ is balanced})\}\ ilde{\mathcal{V}} \leftarrow \{ ilde{m{v}} \,|\, ilde{m{v}} \in m{P}\mathcal{V} + m{r} \wedge (ilde{m{v}} ext{ is balanced})\}$$

2 (Create pairs of lists by filtering) Repeat q^{O(m)} times:
1 Select a random set A ⊂ {1, 2, ..., m} such that |A| = βm
2 Compute

$$\mathcal{U}' \leftarrow \{ \boldsymbol{u} \, | \, \boldsymbol{u} \in \tilde{\mathcal{U}} \land \text{ (the number of } x \in \mathbb{F}_q \text{ in } \tilde{\boldsymbol{u}} \text{ on } A \text{ is } h_x \beta m) \}$$

 $\mathcal{V}' \leftarrow \{ \boldsymbol{v} \, | \, \boldsymbol{v} \in \tilde{\mathcal{V}} \land \text{ (the number of } x \in \mathbb{F}_q \text{ in } \tilde{\boldsymbol{v}} \text{ on } A \text{ is } h_x \beta m) \}$
If $(\boldsymbol{u}^*, \boldsymbol{v}^*) \in \mathcal{U}' \times \mathcal{V}' \text{ s.t. } w_{\mathrm{H}}(\boldsymbol{u}^* - \boldsymbol{v}^*) = \gamma m$, then success

Intuitive idea: Since $w_{\mathrm{H}}(\boldsymbol{u}^*-\boldsymbol{v}^*)$ is small, for $\exists A$,

 $(u^* has a bias on A) \Rightarrow (v^* has the same bias on A)$

May-Ozerov Algorithm over \mathbb{F}_q : Some More Detail

- The vectors are divided into t blocks $\tilde{\boldsymbol{u}} = (\tilde{\boldsymbol{u}}_1, \dots, \tilde{\boldsymbol{u}}_t)$
- The second step of the algorithm is applied recursively

Theorem

The May-Ozerov algorithm solves the (m, γ, λ) -NN problem over \mathbb{F}_q in time $\tilde{O}(q^{(y+\varepsilon)m})$ with overwhelming probability, where

•
$$y = (1 - \gamma) \left(H_q(\beta) - \frac{1}{q} \sum_{x \in \mathbb{F}_q} H_q\left(\frac{qh_x - \gamma}{1 - \gamma}\beta\right) \right)$$

•
$$\varepsilon > 0$$
 is any real

The time complexity is optimized under

•
$$0 < \beta < 1$$

• $\frac{\gamma}{q} \le h_x \le \frac{\gamma}{q} + \frac{1-\gamma}{q\beta}$ for $\forall x \in \mathbb{F}_q$, and $\sum_{x \in \mathbb{F}_q} h_x = 1$
• $\lambda < H_q(\beta) - \frac{1}{q} \sum_{x \in \mathbb{F}_q} H_q(qh_x\beta)$

Numerical Analysis

Asymptotic time complexity of Stern ISD with May-Ozerov NN for bounded distance decoding over \mathbb{F}_q

- Time complexity is $\tilde{O}(q^{f(q,R)n})$, where R = k/n.
- q = 2, 3, 4, 5, 7, 8, 11 in the decreasing order.

Numerical Analysis

Asymptotic time complexity of worst cases for bounded distance decoding

• Time complexity is $\tilde{O}(q^{f(q,R)n})$, where R = k/n.

•	All	but	one	of	h_x	's	are	equal	to	h.
---	-----	-----	-----	----	-------	----	-----	-------	----	----

q	f(q,R)	R	p/n	β	h
2	.05498	.4663	.003848	.4998	.3981
3	.05242	.4736	.002979	.1792	.2322
4	.05032	.4796	.002201	.0932	.1644
5	.04864	.4843	.001704	.0593	.1279
7	.04614	.4909	.001164	.0326	.0893
8	.04519	.4933	.001006	.0263	.0778
11	.04299	.4989	.000727	.0166	.0563

Asymptotic time complexity of worst cases for bounded distance decoding

• Time complexity is $\tilde{O}(q^{f(q,R)n})$, where R = k/n.

•
$$\Delta = f(q, R) - f_{\mathrm{S}}(q, R')$$

	Stern-N	ИО	Steri		
q	f(q,R)	R	$f_{\rm S}(q,R')$	R'	Δ
2	.05498	.4663	.05563	.4655	00065
3	.05242	.4736	.05217	.4742	.00025
4	.05032	.4796	.04987	.4801	.00045
5	.04864	.4843	.04815	.4844	.00049
7	.04614	.4909	.04571	.4907	.00043
8	.04519	.4933	.04478	.4931	.00041
11	.04299	.4989	.04266	.4985	.00033

Stern-MO is more efficient than Stern only if q = 2.

Future Work

• Apply May-Ozerov NN algorithm to BJMM ISD algorithm

S. Hirose (Univ. Fukui)