PQC 2016 Hot Topic Session

Multi-Prime Numbers MPKC for Post-Quantum Cryptosystem

Shigeo Tsujii, Masahito Gotaishi, Ryo Fujita
Chuo University

$100 ~ 200$ prime numbers

(1) We prepare set P including many prime numbers and the product of all these prime numbers is set as the public modulus N
of the proposed system.

- Since every prime number is small, it is easy for attackers to reveal them although prime numbers are not disclosed.

F_{i} and $G_{i}(i=1,2, \ldots, K)$ are mutually prime.
$h_{i}(\boldsymbol{x})$: random quadratic polynomials in K variables $(i=1,2, \ldots, K)$

Toy Example $(L=7, \mathrm{~K}=3)$

$$
\begin{aligned}
P & =\{11,13,17,19,23,29,31\} \\
N & =11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \\
& =955,049,953
\end{aligned}
$$

k	F_{k}	G_{k}
1	$F_{1}=11 \times 13 \times 19 \times 31$ $=84,227$	$G_{1}=17 \times 23 \times 29$ $=11,339$
2	$F_{2}=11 \times 17 \times 23 \times 31$ $=133,331$	$G_{2}=13 \times 19 \times 29$ $=7,163$
3	$F_{3}=13 \times 29 \times 31$ $=11,687$	$G_{3}=11 \times 17 \times 19 \times 23$ $=81,719$

Note (1) F_{k} and G_{k} have no common prime number for same k
(2) For different k, common prime number(s) are included in F_{k} and G_{k}

Practical Example

$$
\text { P; \{2,3,5, • • • ,337,347, • • •,1217,1223\} }
$$

There are 196 prime numbers between 2 and 1223, modulus N is about 2000 bits.

Structure of the Central Map

- 2 K subsets $P_{F k}$ and $P_{G k}$ are chosen from P and kept secret against brute force attack,
- where K is the degree of central map vector
- and $\mathrm{k}=1,2, . .$. , K
- For the same $k, P_{F k}$ and $P_{G k}$, they do not share any divisor.

Security against prime number substitution attack

- Each polynomial of central map vector is sum of an element,
- x_{i} of plaintext vector X and a quadratic polynomial with all variables of plaintext
- Every quadratic polynomial includes F_{k} and G_{k} (secret products of all elements of each subset corresponding to $P_{F k}$ and $P_{G k}$
- where F_{k} and G_{k} are coprime.
- Against this structure for attackers it is impossible to eliminate each quadratic polynomial and endures prime number substitution attack.

Table 2 Comparison of the Time to Compute Gröbner Bases

	$K=8$	$K=9$	$K=10$	$K=11$	$K=12$	$K=13$	$K=14$
	$N \approx 2^{160}$	$N \approx 2^{180}$	$N \approx 2^{200}$	$N \approx 2^{220}$	$N \approx 2^{240}$	$N \approx 2^{260}$	$N \approx 2^{280}$
Proposed Scheme	0.07 sec.	0.36 sec.	2 sec.	15 sec.	118 sec.	901 sec.	6872 sec.
Random System	0.07 sec.	0.37 sec.	2 sec.	15 sec.	115 sec.	900 sec.	6858 sec.

Table 3 Comparison of the Maximum Degree of Polynomials to Compute Gröbner Bases

	$K=8$	$K=9$	$K=10$	$K=11$	$K=12$	$K=13$	$K=14$
	$N \approx 2^{160}$	$N \approx 2^{180}$	$N \approx 2^{200}$	$N \approx 2^{220}$	$N \approx 2^{240}$	$N \approx 2^{260}$	$N \approx 2^{280}$
Proposed Scheme	$d_{\max }=10$	$d_{\max }=11$	$d_{\max }=12$	$d_{\max }=13$	$d_{\max }=14$	$d_{\max }=15$	$d_{\max }=16$
Random System	$d_{\max }=10$	$d_{\max }=11$	$d_{\max }=12$	$d_{\max }=13$	$d_{\max }=14$	$d_{\max }=15$	$d_{\max }=16$

Introduction of CRT Part in Front Stage

- Considering the recent growth of IoT(Internet of Things), where many small size data are gathered and processed, it may be desirable that CRT(Chinese Remainder Theorem) is installed at front stage
- Since CRT is linear processing and central part is quadratic polynomial, Introducing this CRT section sharply reduce the size of central map instead of that the size of each plaintext x_{k} has to be reduced according to the number of variables of each CRT part z_{k}.

$$
\begin{aligned}
& \text { Ciphertext } \\
& \text { Vector } \\
& \text { Plaintext } \\
& \text { Vector } \\
& x_{k}=\operatorname{CRT}\left(z_{k}\right)=\sum_{i=1}^{20}\left(z_{i} \prod_{\substack{j=1 \\
j \neq i}}^{20} N_{k j} \cdot\left(N_{k j}^{-1} \bmod N_{k i}\right)\right) \\
& N=\prod_{i=1}^{20} N_{k i} \quad(k=1,2, \ldots, 10) \\
& N_{k i} \text { and } N_{k j}(i \neq j) \text { are co-prime each other. }
\end{aligned}
$$

Application to organizational communications

Unlike ordinary public key cryptosystems such as RSA, the proposed MPKC has special advantage in application to organizational communications.

The proposed multi-prime MPKC can be applied to distributing system of encrypted data (without decoding) to plaintext to appropriate members who are in charge of the receiving data in a organization.

Literature

(1) Shigeo TSUJII), Kohtaro TADAKI), Ryo FUJITA), and Masahito GOTAISHI;

Proposal of the Multivariate Public Key Cryptosystem relying on the difficulty of Factoring a product of Two Large Prime numbers, IEICE transactions on Fundamentals of Electronics,Communications, and Computer Sciences Vol.E99-A No. 1 JANUARY 2016
(2) Shigeo Tsujii, Ryo Fujita, Masahito Gotaishi, and Masao Kasahara; Proposal of Multivariate Public Key Cryptosystem (MPKC) based on Random Quadratic Polynomials using Chinese Remainder Theorem with Numerous Prime Numbers, SCIS (symposium on Cryptography and informarion Security)2016, JANUARY 2016 KUMAMOTO).

