PQC 2016 Hot Topic Session

Multi-Prime Numbers MPKC for Post-Quantum Cryptosystem

Shigeo Tsujii, Masahito Gotaishi, Ryo Fujita

Chuo University

100~200 prime numbers

- We prepare set P including many prime numbers and the product of all these prime numbers is set as the public modulus N of the proposed system.
- Since every prime number is small, it is easy for attackers to reveal them although prime numbers are not disclosed.

 F_i and G_i (i = 1, 2, ..., K) are mutually prime. $h_i(x)$: random quadratic polynomials in *K* variables (i = 1, 2, ..., K) *Toy Example* (L = 7, K = 3)

 $P = \{11, 13, 17, 19, 23, 29, 31\}$ $N = 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31$ = 955,049,953

k	F_k	G_k
1	$F_1 = 11 \times 13 \times 19 \times 31$	$G_1 = 17 \times 23 \times 29$
	= 84,227	= 11,339
2	$F_2 = 11 \times 17 \times 23 \times 31$	$G_2 = 13 \times 19 \times 29$
	= 133,331	= 7,163
3	$F_3 = 13 \times 29 \times 31$	$G_3 = 11 \times 17 \times 19 \times 23$
	= 11,687	= 81,719

Note (1) F_k and G_k have no common prime number for same k

(2) For different k, common prime number(s) are included in F_k and G_k

Practical Example

P; $\{2,3,5, \cdot \cdot \cdot, 337, 347, \cdot \cdot \cdot, 1217, 1223\}$

There are 196 prime numbers between 2 and

1223,

modulus N is about 2000 bits.

Structure of the Central Map

 2K subsets P_{Fk} and P_{Gk} are chosen from P and kept secret against brute force attack,

- where K is the degree of central map vector
- and k=1, 2, ..., K
- For the same k, P_{Fk} and P_{Gk}, they do not share any divisor.

Security against prime number substitution attack

- Each polynomial of central map vector is sum of an element,
- *x_i* of plaintext vector X and a quadratic polynomial with all variables of plaintext
- Every quadratic polynomial includes F_k and G_k (secret products of all elements of each subset corresponding to P_{Fk} and P_{Gk}
- where F_k and G_k are coprime.
- Against this structure for attackers it is impossible to eliminate each quadratic polynomial and endures prime number substitution attack.

Table 2Comparison of the Time to Compute Gröbner Bases

						$K = 13$ $N \approx 2^{260}$	
Proposed Scheme	0.07 sec.	0.36 sec.	2 sec.	15 sec.	118 sec.	901 sec.	6872 sec.
Random System	0.07 sec.	0.37 sec.	2 sec.	15 sec.	115 sec.	900 sec.	6858 sec.

 Table 3
 Comparison of the Maximum Degree of Polynomials to Compute Gröbner Bases

	$K = 8$ $N \approx 2^{160}$	$K = 9$ $N \approx 2^{180}$	$K = 10$ $N \approx 2^{200}$	$K = 11$ $N \approx 2^{220}$	$K = 12$ $N \approx 2^{240}$	$K = 13$ $N \approx 2^{260}$	$K = 14$ $N \approx 2^{280}$
Proposed Scheme	$d_{max} = 10$	$d_{max} = 11$	$d_{max} = 12$	$d_{max} = 13$	$d_{max} = 14$	$d_{max} = 15$	$d_{max} = 16$
Random System	$d_{max} = 10$	$d_{max} = 11$	$d_{max} = 12$	$d_{max} = 13$	$d_{max} = 14$	$d_{max} = 15$	$d_{max} = 16$

Introduction of CRT Part in Front Stage

- Considering the recent growth of IoT(Internet of Things), where many small size data are gathered and processed, it may be desirable that CRT(Chinese Remainder Theorem) is installed at front stage
- Since CRT is linear processing and central part is quadratic polynomial, Introducing this CRT section sharply reduce the size of central map instead of that the size of each plaintext x_k has to be reduced according to the number of variables of each CRT part z_k.

$$x_{k} = \operatorname{CRT}(z_{k}) = \sum_{i=1}^{20} \left[z_{i} \prod_{\substack{j=1\\j \neq i}}^{20} N_{kj} \cdot (N_{kj}^{-1} \mod N_{ki}) \right]$$
$$N = \prod_{i=1}^{20} N_{ki} \qquad (k = 1, 2, ..., 10)$$

 N_{ki} and N_{kj} $(i \neq j)$ are co-prime each other.

Application to organizational communications

Unlike ordinary public key cryptosystems such as RSA, the proposed MPKC has special advantage in application to organizational communications.

The proposed multi-prime MPKC can be applied to distributing system of encrypted data (without decoding) to plaintext to appropriate members who are in charge of the receiving data in a organization.

Literature

(1) Shigeo TSUJII), Kohtaro TADAKI), Ryo FUJITA), and Masahito GOTAISHI;

Proposal of the Multivariate Public Key Cryptosystem relying on the difficulty of Factoring a product of Two Large Prime numbers, IEICE transactions on Fundamentals of Electronics,Communications, and Computer Sciences Vol.E99-A No.1 JANUARY 2016

(2) Shigeo Tsujii, Ryo Fujita, Masahito Gotaishi, and Masao Kasahara; Proposal of Multivariate Public Key Cryptosystem (MPKC) based on Random Quadratic Polynomials using Chinese Remainder Theorem with Numerous Prime Numbers, SCIS (symposium on Cryptography and informarion Security)2016, JANUARY 2016 KUMAMOTO).